Search Results

Now showing 1 - 2 of 2
  • Item
    Spectrometer‐free Optical Hydrogen Sensing Based on Fano‐like Spatial Distribution of Transmission in a Metal−Insulator−Metal Plasmonic Doppler Grating
    (Weinheim : Wiley-VCH, 2021) Chen, Yi‐Ju; Lin, Fan‐Cheng; Singh, Ankit Kumar; Ouyang, Lei; Huang, Jer‐Shing
    Optical nanosensors are promising for hydrogen sensing because they are small, free from spark generation, and feasible for remote optical readout. Conventional optical nanosensors require broadband excitation and spectrometers, rendering the devices bulky and complex. An alternative is spatial intensity-based optical sensing, which only requires an imaging system and a smartly designed platform to report the spatial distribution of analytical optical signals. Here, a spatial intensity-based hydrogen sensing platform is presented based on Fano-like spatial distribution of the transmission in a Pd-Al2O3-Au metal-insulator-metal plasmonic Doppler grating (MIM-PDG). The MIM-PDG manifests the Fano resonance as an asymmetric spatial transmission intensity profile. The absorption of hydrogen changes the spatial Fano-like transmission profiles, which can be analyzed with a “spatial” Fano resonance model and the extracted Fano resonance parameters can be used to establish analytical calibration lines. While gratings sensitive to hydrogen absorption are suitable for hydrogen sensing, hydrogen insensitive gratings are also found, which provide an unperturbed reference signal and may find applications in nanophotonic devices that require a stable optical response under fluctuating hydrogen atmosphere. The MIM-PDG platform is a spectrometer-free and intensity-based optical sensor that requires only an imaging system, making it promising for cellphone-based optical sensing applications. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.
  • Item
    Symmetry breaking-induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers
    (Berlin : Nature Publishing, 2019) Wang, Ning; Zeisberger, Matthias; Hübner, Uwe; Giannini, Vincenzo; Schmidt, Markus A.
    Due to unique properties and great design flexibilities, Fano resonances represent one of the most promising optical features mediated by metallic nanostructures, while the excitation of some Fano modes is impossible due to symmetry reasons. The aim of this work is to show that dense lattice arrangements can have a profound impact on the optical properties of nanostructures and, in particular, can enable the excitation of otherwise dark modes. Here, we demonstrate this concept using the example of rectangular arrays of symmetric trimers packed so densely that the coupling between neighbouring unit cells imposes a symmetry break, enabling the excitation of magnetic Fano resonances. We found that in experiments as well as in simulations, electric and magnetic Fano resonances can be simultaneously formed in cases where the inter-trimer distances are sufficiently small. By analysing the transition from an isolated trimer mode into a regime of strong near-field coupling, we show that by modifying the rectangular unit cell lengths due to the symmetry mismatch between lattice and trimer, two types of Fano resonances can be found, especially magnetic Fano resonances with loop-type magnetic field distributions within the centre of each trimer, which can be either enhanced or suppressed. In addition, the influence of the refractive index environment was measured, showing sensitivity values of approximately 300 nm/RIU. Our work provides fundamental insights into the interaction of the lattice and nanostructure response and paves the way towards the observation of novel optical excitations.