Search Results

Now showing 1 - 4 of 4
  • Item
    Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960-2000
    (Göttingen : Copernicus, 2008) Peters, D.H.W.; Gabriel, A.; Entzian, G.
    This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr) over 40 years is of the same order (about 100 m) as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to about a 1.4-DU total ozone decrease.
  • Item
    Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime
    (Göttingen : Copernicus, 2014) Sonnemann, G.R.; Grygalashvyly, M.
    We use the estimated lifetime of methane (CH4), the current methane concentration, and its annual growth rate to calculate the global methane emission rate. The upper and lower limits of the annual global methane emission rate, depending on loss of CH4 into the stratosphere and methane consuming bacteria, amounts to 648.0 Mt a-1 and 608.0 Mt a-1. These values are in reasonable agreement with satellite and with much more accurate in situ measurements of methane. We estimate a mean tropospheric and mass-weighted temperature related to the reaction rate and employ a mean OH-concentration to calculate a mean methane lifetime. The estimated atmospheric lifetime of methane amounts to 8.28 years and 8.84 years, respectively. In order to improve the analysis a realistic 3D-calculations should be performed.
  • Item
    The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings
    (Göttingen : Copernicus, 2013) Matthias, V.; Hoffmann, P.; Manson, A.; Meek, C.; Stober, G.; Brown, P.; Rapp, M.
    The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid-than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PWactivity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.
  • Item
    Upper stratospheric ozone decrease events due to a positive feedback between ozone and the ozone dissociation rate
    (Göttingen : Copernicus, 2009) Sonnemann, G.R.; Hartogh, P.
    Ozone measurements taken with a ground based microwave instrument at Lindau (51.66° N, 10.13° E) over some years showed strong ozone decrease events within the stratopause region, particularly during the winter half-year. These events are characterized by a marked drop of the ozone mixing ratio from two to three ppmv to less than half a ppmv in extreme cases. Simultaneous water vapor measurements at the same place, also carried out by a microwave instrument, showed a strong increase of its mixing ratio and the temperature was also enhanced during these episodes. The theoretical analysis brought evidence that these events result from a positive feedback in the complex radiatively-chemical system between the ozone column density and the ozone dissociation rate.