Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon

2019, Madueño, Leizel, Kecorius, Simonas, Löndahl, Jakob, Müller, Thomas, Pfeifer, Sascha, Haudek, Andrea, Mardoñez, Valeria, Wiedensohler, Alfred

In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts. Firstly, we present the design of portable system and methodology to evaluate the exhaled air BC content. We demonstrate that under real-world conditions, the proposed system exhibit negligible particle losses, and can additionally be used to determine the minute ventilation. Secondly, exemplary experimental data from the system is presented. A feasibility study was conducted in the city of La Paz, Bolivia. In a pilot experiment, we found that the cumulative total respiratory tract deposition dose over 1-h commuting trip would result in approximately 2.6 μg of BC. This is up to 5 times lower than the values obtained from conjectural approach (e.g. using physical parameters from previously reported worksheets). Measured total respiratory tract deposited BC fraction varied from 39% to 48% during walking and commuting inside a micro-bus, respectively. To the best of our knowledge, no studies focusing on experimental determination of real-world deposition dose of BC have been performed in developing regions. This can be especially important because the BC mass concentration is significant and determines a large fraction of particle mass concentration. In this work, we propose a potential method, recommendations, as well as the limitations in establishing an easy and relatively cheap way to estimate the respiratory tract deposition of BC. In this study we present a novel method to measure real-world respiratory tract deposition dose of Black Carbon. Results from a pilot study in La Paz, Bolivia, are presented. © 2019 The Authors

Loading...
Thumbnail Image
Item

The impact of COVID-19 lockdown measures on the Indian summer monsoon

2021-7-16, Fadnavis, Suvarna, Sabin, T. P., Rap, Alexandru, Müller, Rolf, Kubin, Anne, Heinold, Bernd

Aerosol concentrations over Asia play a key role in modulating the Indian summer monsoon (ISM) rainfall. Lockdown measures imposed to prevent the spread of the COVID-19 pandemic led to substantial reductions in observed Asian aerosol loadings. Here, we use bottom-up estimates of anthropogenic emissions based on national mobility data from Google and Apple, along with simulations from the ECHAM6-HAMMOZ state-of-the-art aerosol-chemistry-climate model to investigate the impact of the reduced aerosol and gases pollution loadings on the ISM. We show that the decrease in anthropogenic emissions led to a 4 W m−2 increase in surface solar radiation over parts of South Asia, which resulted in a strengthening of the ISM. Simultaneously, while natural emission parameterizations are kept the same in all our simulations, the anthropogenic emission reduction led to changes in the atmospheric circulation, causing accumulation of dust over the Tibetan plateau (TP) during the pre-monsoon and monsoon seasons. This accumulated dust has intensified the warm core over the TP that reinforced the intensification of the Hadley circulation. The associated cross-equatorial moisture influx over the Indian landmass led to an enhanced amount of rainfall by 4% (0.2 mm d−1) over the Indian landmass and 5%–15% (0.8–3 mm d−1) over central India. These estimates may vary under the influence of large-scale coupled atmosphere–ocean oscillations (e.g. El Nino Southern Oscillation, Indian Ocean Dipole). Our study indicates that the reduced anthropogenic emissions caused by the unprecedented COVID-19 restrictions had a favourable effect on the hydrological cycle over South Asia, which has been facing water scarcity during the past decades. This emphasizes the need for stringent measures to limit future anthropogenic emissions in South Asia for protecting one of the world's most densely populated regions.

Loading...
Thumbnail Image
Item

A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

2016, Cavalli, F., Alastuey, A., Areskoug, H., Ceburnis, D., Čech, J., Genberg, J., Harrison, R.M., Jaffrezo, J.L., Kiss, G., Laj, P., Mihalopoulos, N., Perez, N., Quincey, P., Schwarz, J., Sellegri, K., Spindler, G., Swietlicki, E., Theodosi, C., Yttri, K.E., Aas, W., Putaud, J.P.

Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between −50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15–0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

Loading...
Thumbnail Image
Item

Variability of Cosmogenic 35S in Rain—Resulting Implications for the Use of Radiosulfur as Natural Groundwater Residence Time Tracer

2020, Schubert, Michael, Knöller, Kay, Tegen, Ina, Terzi, Lucrezia

Information about groundwater residence times is essential for sustainable groundwater management. Naturally occurring radionuclides are suitable tools for related investigations. While the applicability of several long-lived radionuclides has been demonstrated for the investigation of long residence times (i.e., years, decades, centuries and more), studies that focus on sub-yearly residence times are only scarcely discussed in the literature. This shortage is mainly due to the rather small number of radionuclides that are generally suitable for the purpose and show at the same time adequately short half-lives. A promising innovative approach in this regard applies cosmogenic radiosulfur (35S). 35S is continuously produced in the stratosphere from where it is conveyed to the troposphere or lower atmosphere and finally transferred with the rain to the groundwater. As soon as the meteoric water enters the subsurface, its 35S activity decreases with an 87.4 day half-life, making 35S a suitable time tracer for investigating sub-yearly groundwater ages. However, since precipitation shows a varying 35S activity during the year, setting up a reliable 35S input function is required for sound data evaluation. That calls for (i) an investigation of the long-term variation of the 35S activity in the rain, (ii) the identification of the associated drivers and (iii) an approach for setting up a 35S input function based on easily attainable proxies. The paper discusses 35S activities in the rain recorded over a 12-month period, identifies natural and anthropogenic influences, and suggests an approach for setting up a 35S input function applying 7Be as a pro

Loading...
Thumbnail Image
Item

Preventing airborne transmission of SARS-CoV-2 in hospitals and nursing homes

2020, Ahlawat, Ajit, Mishra, Sumit Kumar, Birks, John W., Costabile, Francesca, Wiedensohler, Alfred

[No abstract available]

Loading...
Thumbnail Image
Item

Particle number emission rates of aerosol sources in 40 German households and their contributions to ultrafine and fine particle exposure

2020, Zhao, Jiangyue, Birmili, Wolfram, Hussein, Tareq, Wehner, Birgit, Wiedensohler, Alfred

More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10–800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013 h−1). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively). © 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Loading...
Thumbnail Image
Item

Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study

2021, Tõnisson, Liina, Voigtländer, Jens, Weger, Michael, Assmann, Denise, Käthner, Ralf, Heinold, Bernd, Macke, Andreas

Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.

Loading...
Thumbnail Image
Item

Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe

2021, Sun, Jia, Hermann, Markus, Yuan, Ye, Birmili, Wolfram, Collaud Coen, Martine, Weinhold, Kay, Madueño, Leizel, Poulain, Laurent, Tuch, Thomas, Ries, Ludwig, Sohmer, Ralf, Couret, Cedric, Frank, Gabriele, Brem, Benjamin Tobias, Gysel-Beer, Martin, Ma, Nan, Wiedensohler, Alfred

Background: The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results: The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions: The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends. © 2021, The Author(s).

Loading...
Thumbnail Image
Item

Infrequent new particle formation over the remote boreal forest of Siberia

2018, Wiedensohler, A., Ma, N., Birmili, W., Heintzenberg, J., Ditas, F., Andreae, M.O., Panov, A.

Aerosol particle number size distributions (PNSD) were investigated to verify, if extremely low-volatility organic vapors (ELVOC) from natural sources alone could induce new particle formation and growth events over the remote boreal forest region of Siberia, hundreds of kilometers away from significant anthropogenic sources. We re-evaluated observations determined at a height of 300 m of the remote observatory ZOTTO (Zotino Tall Tower Observatory, http://www.zottoproject.org). We found that new particle formation events occurred only on 11 days in a 3-year period, suggesting that homogeneous nucleation with a subsequent condensational growth could not be the major process, maintaining the particle number concentration in the planetary boundary layer of the remote boreal forest area of Siberia. © 2018 Elsevier Ltd

Loading...
Thumbnail Image
Item

From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines

2020, Tõnisson, Liina, Kunz, Yvonne, Kecorius, Simonas, Madueño, Leizel, Tamayo, Everlyn Gayle, Casanova, Dang Marviluz, Zhao, Qi, Schikowski, Tamara, Hornidge, Anna-Katharina, Wiedensohler, Alfred, Macke, Andreas

Air pollution, which kills an estimated 7 million people every year, is one of the greatest environmental health risks of our times. Finding solutions to this threat poses challenges to practitioners and policymakers alike. Increasing awareness on the benefits of transdisciplinary research in solution-oriented sustainable development projects has led to the establishment of the research project “A Transdisciplinary Approach to Mitigate Emissions of Black Carbon” (TAME-BC). This paper introduces the TAME-BC research setup that took place with Metro Manila, Philippines, case study. The approach integrates BC measurements with technological, socio-political, and health aspects to improve the scientific state of the art, policymaking, transport sector planning, and clinical studies related to air pollution health effects. The first pillar in the setup presents an (1) air quality assessment through aerosol measurements and instrumentation, complemented by a (2) description and assessment of the current policies, technologies, and practices of the transport sector that is responsible for pollution levels in the Philippines, as well as a (3) BC exposure and associated health impacts assessment. The fourth pillar is intercrossing, fostering (4) knowledge co-creation through stakeholder involvement across scales. We argue that this transdisciplinary approach is useful for research endeavors aiming for emission mitigation in rapidly urbanizing regions beyond Metro Manila.