Search Results

Now showing 1 - 8 of 8
  • Item
    The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component
    (Basel : MDPI, 2021-3-1) Gültner, Marén; Boldt, Regine; Formanek, Petr; Fischer, Dieter; Simon, Frank; Pötschke, Petra
    Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
  • Item
    Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes
    (Basel : MDPI, 2021-4-28) Krause, Beate; Liguoro, Alice; Pötschke, Petra
    The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.
  • Item
    Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopy
    (Amsterdam [u.a.] : Elsevier Science, 2022) Niefind, Falk; Shivhare, Rishi; Mannsfeld, Stefan C.B.; Abel, Bernd; Hambsch, Mike
    The nanoscale morphology of bulk heterojunctions is highly important for the charge dissociation and transport in organic solar cells and ultimately defines the performance of the cell. The visualization of this nano-morphology in terms of domain size and polymer orientation in a fast and straightforward way is therefore of great interest to evaluate the suitability of a film for efficient solar cells. Here, we demonstrate that the morphology of different blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) can be imaged and analyzed by employing photoemission electron microscopy.
  • Item
    Influence of Controlled Epoxidation of an Asymmetric Styrene/Butadiene Star Block Copolymer on Structural and Mechanical Properties
    (Basel : MDPI, 2020) Khatiwada, Shankar P.; Staudinger, Ulrike; Jehnichen, Dieter; Heinrich, Gert; Adhikari, Rameshwar
    The chemical modification (namely the epoxidation) of a star shaped block copolymer (BCP) based on polystyrene (PS) and polybutadiene (PB) and its effect on structural and mechanical properties of the polymer were investigated. Epoxidation degrees of 37 mol%, 58 mol%, and 82 mol% were achieved by the reaction of the copolymer with meta-chloroperoxy benzoic acid (m-CPBA) under controlled conditions. The BCP structure was found to change from lamellae-like to mixed-type morphologies for intermediate epoxidation level while leading to quite ordered cylindrical structures for the higher level of chemical modification. As a consequence, the glass transition temperature (Tg) of the soft PB component of the BCP shifted towards significantly higher temperature. A clear increase in tensile modulus and tensile strength with a moderate decrease in elongation at break was observed. The epoxidized BCPs are suitable as reactive templates for the fabrication of nanostructured thermosetting resins.
  • Item
    Epitaxial stannate pyrochlore thin films: Limitations of cation stoichiometry and electron doping
    (Melville, NY : AIP Publishing, 2021) Hensling, Felix V. E.; Dahliah, Diana; Dulal, Prabin; Singleton, Patrick; Sun, Jiaxin; Schubert, Jürgen; Paik, Hanjong; Subedi, Indra; Subedi, Biwas; Rignanese, Gian-Marco; Podraza, Nikolas J.; Hautier, Geoffroy; Schlom, Darrell G.
    We have studied the growth of epitaxial films of stannate pyrochlores with a general formula A2Sn2O7 (A = La and Y) and find that it is possible to incorporate ∼25% excess of the A-site constituent; in contrast, any tin excess is expelled. We unravel the defect chemistry, allowing for the incorporation of excess A-site species and the mechanism behind the tin expulsion. An A-site surplus is manifested by a shift in the film diffraction peaks, and the expulsion of tin is apparent from the surface morphology of the film. In an attempt to increase La2Sn2O7 conductivity through n-type doping, substantial quantities of tin have been substituted by antimony while maintaining good film quality. The sample remained insulating as explained by first-principles computations, showing that both the oxygen vacancy and antimony-on-tin substitutional defects are deep. Similar conclusions are drawn on Y2Sn2O7. An alternative n-type dopant, fluorine on oxygen, is shallow according to computations and more likely to lead to electrical conductivity. The bandgaps of stoichiometric La2Sn2O7 and Y2Sn2O7 films were determined by spectroscopic ellipsometry to be 4.2 eV and 4.48 eV, respectively. © 2021 Author(s).
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    Morphology and Physico-Mechanical Threshold of α-Cellulose as Filler in an E-SBR Composite
    (Basel : MDPI, 2021) Chowdhury, Soumya Ghosh; Chanda, Jagannath; Ghosh, Sreedip; Pal, Abhijit; Ghosh, Prasenjit; Bhattacharyya, Sanjay Kumar; Mukhopadhyay, Rabindra; Banerjee, Shib Shankar; Das, Amit
    In the current context of green mobility and sustainability, the use of new generation natural fillers, namely, α-cellulose, has gained significant recognition. The presence of hydroxyl groups on α-cellulose has generated immense eagerness to map its potency as filler in an elastomeric composite. In the present work, α-cellulose-emulsion-grade styrene butadiene rubber (E-SBR) composite is prepared by conventional rubber processing method by using variable proportions of α-cellulose (1 to 40 phr) to assess its reinforce ability. Rheological, physical, visco-elastic and dynamic-mechanical behavior have clearly established that 10 phr loading of α-cellulose can be considered as an optimized dosage in terms of performance parameters. Morphological characterization with the aid of scanning electron microscope (SEM) and transmission electron microscopy (TEM) also substantiated that composite with 10 phr loading of α-cellulose has achieved the morphological threshold. With this background, synthetic filler (silica) is substituted by green filler (α-cellulose) in an E-SBR-based composite. Characterization of the compound has clearly established the reinforcement ability of α-cellulose.
  • Item
    Controlling palladium morphology in electrodeposition from nanoparticles to dendrites via the use of mixed solvents
    (Cambridge : RSC Publ., 2020) Hussein, Haytham E. M.; Amari, Houari; Breeze, Ben G.; Beanland, Richard; Macpherson, Julie V.
    By changing the mole fraction of water (χwater) in the solvent acetonitrile (MeCN), we report a simple procedure to control nanostructure morphology during electrodeposition. We focus on the electrodeposition of palladium (Pd) on electron beam transparent boron-doped diamond (BDD) electrodes. Three solutions are employed, MeCN rich (90% v/v MeCN, χwater = 0.246), equal volumes (50% v/v MeCN, χwater = 0.743) and water rich (10% v/v MeCN, χwater = 0.963), with electrodeposition carried out under a constant, and high overpotential (−1.0 V), for fixed time periods (50, 150 and 300 s). Scanning transmission electron microscopy (STEM) reveals that in MeCN rich solution, Pd atoms, amorphous atom clusters and (majority) nanoparticles (NPs) result. As water content is increased, NPs are again evident but also elongated and defected nanostructures which grow in prominence with time. In the water rich environment, NPs and branched, concave and star-like Pd nanostructures are now seen, which with time translate to aggregated porous structures and ultimately dendrites. We attribute these observations to the role MeCN adsorption on Pd surfaces plays in retarding metal nucleation and growth.