Search Results

Now showing 1 - 10 of 34
Loading...
Thumbnail Image
Item

XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment

2015, Marciniak, A., Despré, V., Barillot, T., Rouzée, A., Galbraith, M.C.E., Klei, J., Yang, C.-H., Smeenk, C.T.L., Loriot, V., Nagaprasad Reddy, S., Tielens, A.G.G.M., Mahapatra, S., Kuleff, A.I., Vrakking, M.J.J., Lépine, F.

Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.

Loading...
Thumbnail Image
Item

Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

2015, Schütte, B., Arbeiter, M., Fennel, T., Jabbari, G., Kuleff, A.I., Vrakking, M.J.J., Rouzée, A.

When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

Loading...
Thumbnail Image
Item

Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy

2020, Willems, Felix, von Korff Schmising, Clemens, Strüber, Christian, Schick, Daniel, Engel, Dieter W., Dewhurst, J. K., Elliott, Peter, Sharma, Sangeeta, Eisebitt, Stefan

Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems.

Loading...
Thumbnail Image
Item

Raman gas self-organizing into deep nano-trap lattice

2016, Alharbi, M., Husakou, A., Chafer, M., Debord, B., Gérôme, F., Benabid, F.

Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb-Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing.

Loading...
Thumbnail Image
Item

Enhancing laser beam performance by interfering intense laser beamlets

2019, Morace, A., Iwata, N., Sentoku, Y., Mima, K., Arikawa, Y., Yogo, A., Andreev, A., Tosaki, S., Vaisseau, X., Abe, Y., Kojima, S., Sakata, S., Hata, M., Lee, S., Matsuo, K., Kamitsukasa, N., Norimatsu, T., Kawanaka, J., Tokita, S., Miyanaga, N., Shiraga, H., Sakawa, Y., Nakai, M., Nishimura, H., Azechi, H., Fujioka, S., Kodama, R.

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

Loading...
Thumbnail Image
Item

Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

2015, Frietsch, B., Bowlan, J., Carley, R., Teichmann, M., Wienholdt, S., Hinzke, D., Nowak, U., Carva, K., Oppeneer, P. M., Weinelt, M.

The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale.

Loading...
Thumbnail Image
Item

Probing multiphoton light-induced molecular potentials

2020, Kübel, M., Spanner, M., Dube, Z., Naumov, A.Yu., Chelkowski, S., Bandrauk, A.D., Vrakking, M.J.J., Corkum, P.B., Villeneuve, D.M., Staudte, A.

The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.

Loading...
Thumbnail Image
Item

Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles

2019, Rupp, Philipp, Burger, Christian, Kling, Nora G, Kübel, Matthias, Mitra, Sambit, Rosenberger, Philipp, Weatherby, Thomas, Saito, Nariyuki, Itatani, Jiro, Alnaser, Ali S., Raschke, Markus B., Rühl, Eckart, Schlander, Annika, Gallei, Markus, Seiffert, Lennart, Fennel, Thomas, Bergues, Boris, Kling, Matthias F.

Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.

Loading...
Thumbnail Image
Item

Molecular movie of ultrafast coherent rotational dynamics of OCS

2019, Karamatskos, Evangelos T., Raabe, Sebastian, Mullins, Terry, Trabattoni, Andrea, Stammer, Philipp, Goldsztejn, Gildas, Johansen, Rasmus R., Długołecki, Karol, Stapelfeldt, Henrik, Vrakking, Marc J. J., Trippel, Sebastian, Rouzée, Arnaud, Küpper, Jochen

Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.

Loading...
Thumbnail Image
Item

Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation

2015, Ferré, A., Boguslavskiy, A.E., Dagan, M., Blanchet, V., Bruner, B.D., Burgy, F., Camper, A., Descamps, D., Fabre, B., Fedorov, N., Gaudin, J., Geoffroy, G., Mikosch, J., Patchkovskii, S., Petit, S., Ruchon, T., Soifer, H., Staedter, D., Wilkinson, I., Stolow, A., Dudovich, N., Mairesse, Y.

High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20-26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected.