Search Results

Now showing 1 - 10 of 34
  • Item
    Delayed relaxation of highly excited naphthalene cations
    (Bristol : IOP Publ., 2020) Reitsma, G.; Hummert, J.; Dura, J.; Loriot, V.; Vrakking, M.J.J.; Lépine, F.; Kornilov, O.
    The efficiency of energy transfer in ultrafast electronic relaxation of molecules depends strongly on the complex interplay between electronic and nuclear motion. In this study we use wavelength-selected XUV pulses to induce relaxation dynamics of highly excited cationic states of naphthalene. Surprisingly, the observed relaxation lifetimes increase with the cationic excitation energy. We propose that this is a manifestation of a quantum mechanical population trapping that leads to delayed relaxation of molecules in the regions with a high density of excited states. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Robust transverse structures in rescattered photoelectron wavepackets and their consequences
    (Bristol : IOP Publ., 2020) Bredtmann, T.; Patchkovskii, S.
    Initial-state symmetry has been under-appreciated in strong-field spectroscopies, where laser fields dominate the dynamics. We demonstrate numerically that the transverse photoelectron phase structure, arising from the initial-state symmetry, is robust in strong-field rescattering, and has pronounced effects on strong-field photoelectron spectra. Interpretation of rescattering experiments need to take these symmetry effects into account. In turn, robust transverse photoelectron phase structures may enable attosecond sub-Ångström super-resolution imaging with structured electron beams.
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    Emittance Reduction of RF Photoinjector Generated Electron Beams by Transverse Laser Beam Shaping
    (Bristol : IOP Publ., 2019) Gross, M.; Qian, H.J.; Boonpornprasert, P.; Chen, Y.; Good, J.D.; Huck, H.; Isaev, I.; Koschitzki, C.; Krasilnikov, M.; Lal, S.; Li, X.; Lishilin, O.; Loisch, G.; Melkumyan, D.; Mohanty, S.K.; Niemczyk, R.; Oppelt, A.; Shaker, H.; Shu, G.; Stephan, F.; Vashchenko, G.; Will, I.
    Laser pulse shaping is one of the key elements to generate low emittance electron beams with RF photoinjectors. Ultimately high performance can be achieved with ellipsoidal laser pulses, but 3-dimensional shaping is challenging. High beam quality can also be reached by simple transverse pulse shaping, which has demonstrated improved beam emittance compared to a transversely uniform laser in the 'pancake' photoemission regime. In this contribution we present the truncation of a Gaussian laser at a radius of approximately one sigma in the intermediate (electron bunch length directly after emission about the same as radius) photoemission regime with high acceleration gradients (up to 60 MV/m). This type of electron bunch is used e.g. at the European XFEL and FLASH free electron lasers at DESY, Hamburg site and is being investigated in detail at the Photoinjector Test facility at DESY in Zeuthen (PITZ). Here we present ray-tracing simulations and experimental data of a laser beamline upgrade enabling variable transverse truncation. Initial projected emittance measurements taken with help of this setup are shown, as well as supporting beam dynamics simulations. Additional simulations show the potential for substantial reduction of slice emittance at PITZ. © Published under licence by IOP Publishing Ltd.
  • Item
    Generation of elliptically polarized soft x rays using high-order harmonic generation with orthogonal two-color laser fields
    (Bristol : IOP Publ., 2020) Milošević, D.B.; Becker, W.
    High-order harmonic generation by orthogonally polarized two-color (OTC) laser fields is analysed using strong-field approximation and quantum-orbit theory. Results for the field components frequency ratio of 2:1 and 3:1 are presented and compared. We have shown that, depending on the relative phase between the field components, the shape of the high-harmonic spectrum can be very different from that obtained by a monochromatic linearly polarized laser field. It is also shown that it is possible to generate elliptically polarized high-order harmonics with very high photon energies using OTC laser field with the frequency ratio of 3:1 and a long fundamental wavelength. An effective relative phase control of the harmonic emission is demonstrated. The obtained results are explained using the quantum-orbit theory. © Published under licence by IOP Publishing Ltd.
  • Item
    The influence of the driving-bicircular-field component intensities on the helicities of emitted high-order harmonics
    (Bristol : IOP Publ., 2019) Milošević, D.B.
    High-order harmonics generated by a linearly polarized laser field are also linearly polarized. Having in mind that for various application, such as the exploration of magnetic materials, chiral molecules etc., we need circularly polarized high harmonics which serve as coherent soft x-rays, we explore high-order harmonic generation by the so-called bicircular laser field. This field consists of two coplanar counter-rotating circularly polarized fields of different frequencies equal to integer multiples of a fundamental frequency ω. High harmonics generated by such field are circularly polarized with helicity alternating between +1 and −1. Combining a group of such harmonics, instead of obtaining a circularly polarized attosecond pulse train, one obtains a pulse with unusual polarization properties. But, if the harmonics of particular helicity are stronger, i.e., if we have helicity asymmetry in a high-harmonic energy interval, then it is possible to generate an elliptical or even circular pulse train. We theoretically investigated a wide range of bicircular field-component intensities (I1 and I2) and found regions where both the harmonic intensity is high and the helicity asymmetry is large. Particular attention is devoted to the ω−2ω and ω−3ω bicircular fields and atoms having the s and p ground states. In our calculations we use strong-field approximation and quantum-orbit theory. We show that, even in the extreme case of I2 = 8I1, for an ω−3ω bicircular field, high-order harmonic generation is more efficient than in the I2 = I1 case. The obtained results are explained analyzing the relevant electron trajectories and velocities, which follow from the quantum-orbit theory. For the atoms having p ground state the helicity asymmetry parameter is large for a wide range of high-harmonic photon energies, while for the atoms having s ground state the helicity asymmetry parameter can be large only for low harmonics. We confirm this by averaging the obtained results over the intensity distribution in the laser focus.
  • Item
    Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate
    (Bristol : IOP Publ., 2020) Witting, T.; Furch, F.; Osolodkov, M.; Schell, F.; Menoni, C.; Schulz, C.P.; Vrakking, M.J.J.
    An attosecond pump-probe beamline with 100 kHz repetition rate for coincidence experiments has been developed. It is based on non-collinear optical parametric chirped pulse ampli-cation and delivers 100 µJ sub-4 fs to an high-harmonic generation source. Details on the generation and characterization of isolated attosecond pulses will be presented. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Atomic and molecular suite of R-matrix codes for ultrafast dynamics in strong laser fields and electron/positron scattering
    (Bristol : IOP Publ., 2020) Wragg, J.; Benda, J.; Mašín, Z.; Armstrong, G.S.J.; Clarke, D.D.A.; Brown, A.C.; Ballance, C.; Harvey, A.G.; Houfek, K.; Sunderland, A.; Plummer, M.; Gorfinkiel, J.D.; Van Der Hart, H.
    We describe and illustrate a number of recent developments of the atomic and molecular ab initio R-matrix suites for both time-dependent calculations of ultrafast laser-induced dynamics and time-independentcalculations of photoionization and electron scattering. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Signatures of Light-Induced Potential Energy Surfaces in H2+
    (Bristol : IOP Publ., 2020) Kübel, M.; Spanner, M.; Dube, Z.; Naumov, A. Yu; Vrakking, M.J.J.; Corkum, P.B.; Villeneuve, D.M.; Staudte, A.
    Using theory and Cold Target Recoil Ion Momentum Spectroscopy we find signatures of light-induced molecular potential energy surfaces in the 3-dimensional proton momentum distributions of dissociating H+2. © 2020 Journal of Physics: Conference Series. All rights reserved.
  • Item
    Molecular Auger Interferometry
    (Bristol : IOP Publ., 2020) Khokhlova, M.; Cooper, B.; Ueda, K.; Prince, K.C.; Kolorenč, P.; Ivanov, M.; Averbukh, V.
    We propose a theory of interferometric measurement of a normal Auger decay width in molecules. Molecular Auger interferometry is based on the coherent phase control of Auger dynamics in a two-colour (ω/2ω) laser field. We show that, in contrast to atoms, in oriented molecules of certain point groups (e.g. CH3F) the relative ω/2ω phase modulates the total ionisation yield. A simple analytical formula is derived for the extraction of the widths of Auger-active states from a molecular Auger interferogram, avoiding the need of either attosecond or high-resolution spectroscopy.