Search Results

Now showing 1 - 2 of 2
  • Item
    pyGIMLi: An open-source library for modelling and inversion in geophysics
    (Amsterdam [u.a.] : Elsevier Science, 2017) Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
  • Item
    Dimethyl carbonate synthesis from carbon dioxide using ceria–zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling
    (London : RSC Publishing, 2016) Kumar, Praveen; With, Patrick; Srivastava, Vimal Chandra; Shukla, Kartikeya; Gläser, Roger; Mishra, Indra Mani
    In this paper, a series of CexZr1−xO2 solid solution spheres were synthesized by exo- and endo-templating methods and tested for dimethyl carbonate (DMC) synthesis using direct conversion of CO2. The synthesized catalysts were characterized by X-ray diffraction (XRD), N2-physisorption, scanning electron microscopy (SEM), and CO2/NH3-temperature-programmed desorption (TPD). Formation of CexZr1−xO2 solid solutions with tetragonal and cubic crystal structures depending on cerium/zirconium compositions was confirmed by XRD analysis. The specific surface area of the mixed oxide decreased and the average pore diameter increased with an increase in the ceria content, with the exception of the mixed oxides with x = 0.4–0.5 i.e. Ce0.4Zr0.6O2 and Ce0.5Zr0.5O2. The basic and acidic site density of the synthesized catalysts was in the order: ZrO2 < CeO2 < Ce0.5Zr0.5O2, and the basic and acidic site density per unit area followed the same order. The best Ce0.5Zr0.5O2 catalyst was further used for the optimization of reaction conditions such as reaction time, reaction temperature, catalyst dose and reusability for DMC synthesis. Furthermore, study of chemical equilibrium modeling was done using the Peng–Robinson–Stryjek–Vera equation of state (PRSV-EoS) along with the van der Waals one-fluid reaction condition so as to calculate change of Gibbs free energy (ΔG°) and heat of reaction (ΔH°).