Search Results

Now showing 1 - 2 of 2
  • Item
    Pd/Cu-Catalyzed amide-enabled selectivity-reversed borocarbonylation of unactivated alkenes
    (Cambridge : RSC, 2021) Wu, Fu-Peng; Wu, Xiao-Feng
    The addition reaction between CuBpin and alkenes to give a terminal boron substituted intermediate is usually fast and facile. In this communication, a selectivity-reversed procedure has been designed and established. This selectivity-reversed borocarbonylation reaction is enabled by a cooperative action between palladium and copper catalysts and proceeds with complete regioselectivity. The key to the success of this transformation is the coordination of the amide group and slower CuBpin formation by using KHCO3as the base. A wide range of β-boryl ketones were produced from terminal unactivated aliphatic alkenes and aryl iodides. Further synthetic transformations of the obtained β-boryl ketones have been developed as well. © The Royal Society of Chemistry 2021.
  • Item
    Selective Wacker type oxidation of a macrocyclic diene to the corresponding monounsaturated ketone used as fragrance
    (Cambridge : RSC, 2019) Brunzel, Tom; Heppekausen, Johannes; Panten, Johannes; Köckritz, Angela
    A selective reaction method for the efficient conversion of an isomeric mixture of 1,9-cyclohexadecadiene (1,9-CHDD) to the corresponding monounsaturated cyclohexadec-8-en-1-one (8-CHD) is described. 8-CHD was synthesized via Wacker type oxidation at room temperature using a highly electrophilic in situ formed dicationic palladium species. Isomerisation of the diene and over-oxidation of the substrate could be nearly suppressed by suitable reaction control, which has a positive effect on selectivity. The utilization of molecular oxygen as a green oxidant and environmentally benign iron(iii) salts as co-catalysts was successfully applied. This reaction strategy is promising to overcome the low overall reactivity of internal olefins in Wacker type oxidations. In addition, larger scale experiments showed further potential for industrial application. This journal is © 2019 The Royal Society of Chemistry.