Search Results

Now showing 1 - 10 of 54
Loading...
Thumbnail Image
Item

Quantum diffusion

2015, Knowles, Antti

If you place a drop of ink into a glass of water, the ink will slowly dissipate into the surrounding water until it is perfectly mixed. If you record your experiment with a camera and play the film backwards, you will see something that is never observed in the real world. Such diffusive and irreversible behaviour is ubiquitous in nature. Nevertheless, the fundamental equations that describe the motion of individual particles – Newton’s and Schrödinger’s equations – are reversible in time: a film depicting the motion of just a few particles looks as realistic when played forwards as when played backwards. In this snapshot, we discuss how one may try to understand the origin of diffusion starting from the fundamental laws of quantum mechanics.

Loading...
Thumbnail Image
Item

Footballs and donuts in four dimensions

2016, Klee, Steven

In this snapshot, we explore connections between the mathematical areas of counting and geometry by studying objects called simplicial complexes. We begin by exploring many familiar objects in our three dimensional world and then discuss the ways one may generalize these ideas into higher dimensions.

Loading...
Thumbnail Image
Item

Solving quadratic equations in many variables

2017, Tignol, Jean-Pierre

Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave differently from field to field. Is there a field in which every quadratic equation in five variables has a solution, but some quadratic equation in four variables has no solution? The answer is in this snapshot.

Loading...
Thumbnail Image
Item

News on quadratic polynomials

2017, Pottmeyer, Lukas

Many problems in mathematics have remained unsolved because of missing links between mathematical disciplines, such as algebra, geometry, analysis, or number theory. Here we introduce a recently discovered result concerning quadratic polynomials, which uses a bridge between algebra and analysis. We study the iterations of quadratic polynomials, obtained by computing the value of a polynomial for a given number and feeding the outcome into the exact same polynomial again. These iterations of polynomials have interesting applications, such as in fractal theory.

Loading...
Thumbnail Image
Item

Towards a Mathematical Theory of Turbulence in Fluids

2016, Bedrossian, Jacob

Fluid mechanics is the theory of how liquids and gases move around. For the most part, the basic physics are well understood and the mathematical models look relatively simple. Despite this, fluids display a dazzling mystery to their motion. The random-looking, chaotic behavior of fluids is known as turbulence, and it lies far beyond our mathematical understanding, despite a century of intense research.

Loading...
Thumbnail Image
Item

How to choose a winner: the mathematics of social choice

2015, Powers, Victoria Ann

Suppose a group of individuals wish to choose among several options, for example electing one of several candidates to a political office or choosing the best contestant in a skating competition. The group might ask: what is the best method for choosing a winner, in the sense that it best reflects the individual preferences of the group members? We will see some examples showing that many voting methods in use around the world can lead to paradoxes and bad outcomes, and we will look at a mathematical model of group decision making. We will discuss Arrow’s impossibility theorem, which says that if there are more than two choices, there is, in a very precise sense, no good method for choosing a winner.

Loading...
Thumbnail Image
Item

Arrangements of lines

2014, Harbourne, Brian, Szemberg, Tomasz

We discuss certain open problems in the context of arrangements of lines in the plane.

Loading...
Thumbnail Image
Item

Operator theory and the singular value decomposition

2014, Knese, Greg

This is a snapshot about operator theory and one of its fundamental tools: the singular value decomposition (SVD). The SVD breaks up linear transformations into simpler mappings, thus unveiling their geometric properties. This tool has become important in many areas of applied mathematics for its ability to organize information. We discuss the SVD in the concrete situation of linear transformations of the plane (such as rotations, reflections, etc.).

Loading...
Thumbnail Image
Item

Random sampling of domino and lozenge tilings

2016, Fusy, Éric

A grid region is (roughly speaking) a collection of “elementary cells” (squares, for example, or triangles) in the plane. One can “tile” these grid regions by arranging the cells in pairs. In this snapshot we review different strategies to generate random tilings of large grid regions in the plane. This makes it possible to observe the behaviour of large random tilings, in particular the occurrence of boundary phenomena that have been the subject of intensive recent research.

Loading...
Thumbnail Image
Item

A few shades of interpolation

2017, Szpond, Justyna

The topic of this snapshot is interpolation. In the ordinary sense, interpolation means to insert something of a different nature into something else. In mathematics, interpolation means constructing new data points from given data points. The new points usually lie in between the already-known points. The purpose of this snapshot is to introduce a particular type of interpolation, namely, polynomial interpolation. This will be explained starting from basic ideas that go back to the ancient Babylonians and Greeks, and will arrive at subjects of current research activity.