Search Results

Now showing 1 - 10 of 221
  • Item
    Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor
    (Washington, DC : ACS Publications, 2019) Alhogail, Sahar; Suaifan, Ghadeer A.R.Y; Bikker, Floris J.; Kaman, Wendy E.; Weber, Karina; Cialla-May, Dana; Popp, Jürgen; Zourob, Mohammed M.
    A rapid, sensitive, and specific colorimetric biosensor based on the use of magnetic nanoparticles (MNPs) was designed for the detection of Pseudomonas aeruginosa in clinical samples. The biosensing platform was based on the measurement of P. aeruginosa proteolytic activity using a specific protease substrate. At the N-terminus, this substrate was covalently bound to MNPs and was linked to a gold sensor surface via cystine at the C-terminus of the substrates. The golden sensor appears black to naked eyes because of the coverage of the MNPs. However, upon proteolysis, the cleaved peptide–MNP moieties will be attracted by an external magnet, revealing the golden color of the sensor surface, which can be observed by the naked eye. In vitro, the biosensor was able to detect specifically and quantitatively the presence of P. aeruginosa with a detection limit of 102 cfu/mL in less than 1 min. The colorimetric biosensor was used to test its ability to detect in situ P. aeruginosa in clinical isolates from patients. This biochip is anticipated to be useful as a rapid point-of-care device for the diagnosis of P. aeruginosa-related infections.
  • Item
    Fe3O4 Nanoparticles Grown on Cellulose/GO Hydrogels as Advanced Catalytic Materials for the Heterogeneous Fenton-like Reaction
    (Washington, DC : ACS Publications, 2019) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    Cellulose/graphene oxide (GO)/iron oxide (Fe3O4) composites were prepared by coprecipitating iron salts onto cellulose/GO hydrogels in a basic solution. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared, and X-ray diffraction characterization showed that Fe3O4 was successfully coated on GO sheets and cellulose. Cellulose/GO/Fe3O4 composites showed excellent catalytic activity by maintaining almost 98% of the removal of acid orange 7 (AO7) and showed stability over 20 consecutive cycles. This performance is attributable to the synergistic effect of Fe3O4 and GO during the heterogeneous Fenton-like reaction. Especially, the cellulose/GO/Fe3O4 composites preserve their activity by keeping the ratio of Fe3+/Fe2+ at 2 even after 20 catalysis cycles, which is supported by XPS analysis.
  • Item
    Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
    (Washington, DC : ACS Publications, 2019) Ghorai, Soumyajit; Mondal, Dipankar; Hait, Sakrit; Ghosh, Anik Kumar; Wiessner, Sven; Das, Amit; De, Debapriya
    Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur–sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses. Thus, the value added by the devulcanized rubber could attract the attention of recycling community for its sustainable applications.
  • Item
    Anti-Stokes Stress Sensing: Mechanochemical Activation of Triplet-Triplet Annihilation Photon Upconversion
    (Weinheim : Wiley-VCH, 2019) Yildiz, Deniz; Baumann, Christoph; Mikosch, Annabel; Kuehne, Alexander J.C.; Herrmann, Andreas; Göstl, Robert
    The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure–property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress-sensing motif that relies on photon upconversion. By combining the Diels–Alder adduct of a π-extended anthracene with the porphyrin-based triplet sensitizer PtOEP in polymers, triplet–triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Benchmark of Simplified Time-Dependent Density Functional Theory for UV–Vis Spectral Properties of Porphyrinoids
    (Weinheim : Wiley-VCH Verlag, 2019) Batra, Kamal; Zahn, Stefan; Heine, Thomas
    Time-dependent density functional theory is thoroughly benchmarked for the predictive calculation of UV–vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density functional theory, including the simplified Tamm–Dancoff approximation, are compared. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm–Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ≈0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ≈0.04 eV).
  • Item
    Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network
    (Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, Yixin
    Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
  • Item
    Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures
    (Weinheim : Wiley-VCH, 2019) Wei, Ren; Breite, Daniel; Song, Chen; Gräsing, Daniel; Ploss, Tina; Hille, Patrick; Schwerdtfeger, Ruth; Matysik, Jörg; Schulze, Agnes; Zimmermann, Wolfgang
    Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.
  • Item
    Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane
    (Weinheim : Wiley-VCH, 2019) Gumz, Hannes; Boye, Susanne; Iyisan, Banu; Krönert, Vera; Formanek, Petr; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
  • Item
    Spot evolution on LQ Hya from 2006-2017: Temperature maps based on SOFIN and FIES data
    (Les Ulis : EDP Sciences, 2019) Cole-Kodikara, Elizabeth M.; Käpylä, Maarit J.; Lehtinen, Jyri J.; Hackman, Thomas; Ilyin, Ilya V.; Piskunov, Nikolai; Kochukhov, Oleg
    Context. LQ Hya is one of the most frequently studied young solar analogue stars. Recently, it has been observed to show intriguing behaviour when analysing long-term photometry. For instance, from 2003-2009, a coherent spot structure migrating in the rotational frame was reported by various authors. However, ever since, the star has entered a chaotic state where coherent structures seem to have disappeared and rapid phase jumps of the photometric minima occur irregularly over time. Aims. LQ Hya is one of the stars included in the SOFIN/FIES long-term monitoring campaign extending over 25 yr. Here, we publish new temperature maps for the star during 2006-2017, covering the chaotic state of the star. Methods. We used a Doppler imaging technique to derive surface temperature maps from high-resolution spectra. Results. From the mean temperatures of the Doppler maps, we see a weak but systematic increase in the surface temperature of the star. This is consistent with the simultaneously increasing photometric magnitude. During nearly all observing seasons, we see a high-latitude spot structure which is clearly non-axisymmetric. The phase behaviour of this structure is very chaotic but agrees reasonably well with the photometry. Equatorial spots are also frequently seen, but we interpret many of them to be artefacts due to the poor to moderate phase coverage. Conclusions. Even during the chaotic phase of the star, the spot topology has remained very similar to the higher activity epochs with more coherent and long-lived spot structures. In particular, we see high-latitude and equatorial spot activity, the mid latitude range still being most often void of spots. We interpret the erratic jumps and drifts in phase of the photometric minima to be caused by changes in the high-latitude spot structure rather than the equatorial spots. © E. M. Cole-Kodikara et al. 2019.