Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Photobiomodulation of lymphatic drainage and clearance: Perspective strategy for augmentation of meningeal lymphatic functions

2020, Semyachkina-Glushkovskaya, Oxana, Abdurashitov, Arkady, Dubrovsky, Alexander, Klimova, Maria, Agranovich, Ilana, Terskov, Andrey, Shirokov, Alexander, Vinnik, Valeria, Kuzmina, Anna, Lezhnev, Nikita, Blokhina, Inna, Shnitenkova, Anastassia, Tuchin, Valery, Rafailov, Edik, Kurths, Jurgen

There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.

Loading...
Thumbnail Image
Item

Autofluorescence guided welding of heart tissue by laser pulse bursts at 1550 nm

2020, Litvinova, Karina, Chernysheva, Maria, Stegemann, Berthold, Leyva, Francisco

Wound healing and other surgical technologies traditionally solved by suturing and stapling have recently been enhanced by the application of laser tissue welding. The usage of high energy laser radiation to anastomose tissues eliminates a foreign body reaction, reduces scar formation, and allows for the creation of watertight closure. In the current work, we show that an ultrafast pulsed fibre laser beam with 183 µJ·cm−2 energy fluence at 1550 nm provides successful welding of dissected chicken heart walls with the tensile strength of 1.03±0.12 kg·cm−2 equal to that of native tissue. The welding process was monitored employing fluorescence spectroscopy that detects the biochemical composition of tissues. We believe that fluorescence spectroscopy guided laser tissue welding is a promising approach for decreasing wound healing times and the avoiding risks of postoperative complications.