Search Results

Now showing 1 - 7 of 7
  • Item
    Effect of Silver Doping on the Superconducting and Structural Properties of YBCO Films Grown by PLD on Different Templates
    (Basel : MDPI, 2022) Shipulin, Ilya A.; Thomas, Aleena Anna; Holleis, Sigrid; Eisterer, Michael; Nielsch, Kornelius; Hühne, Ruben
    We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.
  • Item
    Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
    (Basel : MDPI, 2022) Kühn, Uta; Sander, Jan; Gabrysiak, Katharina Nicole; Giebeler, Lars; Kosiba, Konrad; Pilz, Stefan; Neufeld, Kai; Boehm, Anne Veronika; Hufenbach, Julia Kristin
    A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
  • Item
    Europium Clustering and Glassy Magnetic Behavior in Inorganic Clathrate-VIII Eu8Ga16Ge30
    (Basel : MDPI, 2022) Pérez, Nicolás; Sahoo, Manaswini; Schierning, Gabi; Nielsch, Kornelius; Nolas, George S.
    The temperature- and field-dependent, electrical and thermal properties of inorganic clathrate-VIII Eu8Ga16Ge30 were investigated. The type VIII clathrates were obtained from the melt of elements as reported previously. Specifically, the electrical resistivity data show hysteretic magnetoresistance at low temperatures, and the Seebeck coefficient and Hall data indicate magnetic interactions that affect the electronic structure in this material. Heat capacity and thermal conductivity data corroborate these findings and reveal the complex behavior due to Eu2+ magnetic ordering and clustering from approximately 13 to 4 K. Moreover, the low-frequency dynamic response indicates Eu8Ga16Ge30 to be a glassy magnetic system. In addition to advancing our fundamental understanding of the physical properties of this material, our results can be used to further the research for potential applications of interest in the fields of magnetocalorics or thermoelectrics.
  • Item
    Development of Liquid Diene Rubber Based Highly Deformable Interactive Fiber-Elastomer Composites
    (Basel : MDPI, 2022-01-05) Kamble, Vikram G.; Mersch, Johannes; Tahir, Muhammad; Stöckelhuber, Klaus Werner; Das, Amit; Wießner, Sven
    The preparation of intelligent structures for multiple smart applications such as soft-ro-botics, artificial limbs, etc., is a rapidly evolving research topic. In the present work, the preparation of a functional fabric, and its integration into a soft elastomeric matrix to develop an adaptive fiber-elastomer composite structure, is presented. Functional fabric, with the implementation of the shape memory effect, was combined with liquid polybutadiene rubber by means of a low-temperature vulcanization process. A detailed investigation on the crosslinking behavior of liquid polybutadiene rubber was performed to develop a rubber formulation that is capable of crosslinking liquid rubber at 75 °C, a temperature that is much lower than the phase transformation temperature of SMA wires (90–110 °C). By utilizing the unique low-temperature crosslinking protocol for liquid polybutadiene rubber, soft intelligent structures containing functional fabric were developed. The adaptive structures were successfully activated by Joule heating. The deformation behavior of the smart structures was experimentally demonstrated by reaching a 120 mm bending distance at an activation voltage of 8 V without an additional load, whereas 90 mm, 70 mm, 65 mm, 57 mm bending distances were achieved with attached weights of 5 g, 10 g, 20 g, 30 g, respectively.
  • Item
    Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma
    (Basel : MDPI, 2022) Madeo, Lorenzo Francesco; Sarogni, Patrizia; Cirillo, Giuseppe; Vittorio, Orazio; Voliani, Valerio; Curcio, Manuela; Shai-Hee, Tyler; Büchner, Bernd; Mertig, Michael; Hampel, Silke
    With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100–170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
  • Item
    Differential Sensitivity of Two Leukemia Cell Lines towards Two Major Gas Plasma Products Hydrogen Peroxide and Hypochlorous Acid
    (Basel : MDPI, 2022) Singer, Debora; Miebach, Lea; Bekeschus, Sander
    Oxidative stress has major implications for health and disease. At the same time, the term collectively describes the reactions to different types of reactive oxygen species (ROS) and oxidants, including hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). However, how both compare in terms of cytotoxicity and mechanism of action is less known. Using two leukemia cell lines, Jurkat and THP-1, as model systems at similar cell concentrations, we found an 8-fold greater sensitivity of the former over the latter for H2O2 exposure. Unexpectantly, this was not the case with HOCl exposure. Jurkat cells were 2-fold more resistant to HOCl-induced cytotoxicity than THP-1 cells. In each cell type, the relatively more toxic oxidant also induced activation of caspases 3 and 7 at earlier time points, as time-lapse fluorescence microscopy revealed. The effects observed did not markedly correlate with changes in intracellular GSH and GSSG levels. In addition, siRNA-mediated knockdown of the Nrf2 target HMOX-1 encoding for HO-1 protein and the growth and survival factor IL-8 revealed Jurkat cells to become more sensitive to HOCl, while HO-1 and IL-8 siRNA-mediated knockdown in THP-1 cells produced greater sensitivity towards H2O2. siRNA-mediated knockdown of catalase increased oxidant sensitivity only negligibly. Collectively, the data suggest striking HOCl-resistance of Jurkat and H2O2 resistance of THP-1 cells, showing similar protective roles of HO-1 and IL-8, while caspase activation kinetics differ.
  • Item
    Cold Atmospheric Pressure Plasma Is Effective against P. gingivalis (HW24D-1) Mature Biofilms and Non-Genotoxic to Oral Cells
    (Basel : MDPI, 2022) de Morais Gouvêa Lima, Gabriela; Carta, Celina Faig Lima; Borges, Aline Chiodi; Nishime, Thalita Mayumi Castaldelli; da Silva, Cézar Augusto Villela; Caliari, Marcelo Vidigal; Mayer, Marcia Pinto Alves; Kostov, Konstantin Georgiev; Koga-Ito, Cristiane Yumi
    The effects of helium cold atmospheric pressure plasma (He-CAPP) jet on Porphyromonas gingivalis (HW24D-1) biofilm, on human gingival fibroblasts (HGF) and human gingival keratinocytes (OBA-9) were assessed. Standardized suspension of P. gingivalis was obtained, and biofilms were grown anaerobically for 48 h. After exposition to He-CAPP, the biofilm viability was evaluated by XTT assay. HGF were grown at 37 °C, in an CO2 chamber in DMEM, while OBA-9 cells were cultured in keratinocyte serum-free medium. After 24 h, plates were exposed to He-CAPP for 1 to 7 min. Plasma was generated using a commercial AC power supply with amplitude modulated signal (voltage amplitude of 20 kVp-p, frequency of 31.0 kHz and duty cycle of 22%). The corresponding discharge power was 0.6W at He flow rate of 1 L/min. DNA damage was accessed by static cytometry. Data were analyzed by GraphPad Prism (p < 0.05). Significant reductions in P. gingivalis viability in relation to non-treated groups were detected (p < 0.0001), directly proportional to exposure time. Treated groups were slightly aneuploid after 5- and 7-min treatment in HGF, and for 3 min in OBA-9 cells, with 1.2 DNA index mean. Helium cold atmospheric pressure plasma jet showed inhibitory effect on P. gingivalis mature biofilm and was not genotoxic for epithelial gingival cells and human oral fibroblasts.