Search Results

Now showing 1 - 10 of 25
  • Item
    Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions
    (Weinheim : Wiley-VCH, 2015) Zhang, Zhenglong; Fang, Yurui; Wang, Wenhui; Chen, Li; Sun, Mengtao
    Plasmonics is a well-established field, exploiting the interaction of light and metals at the nanoscale; with the help of surface plasmon polaritons, remote-excitation can also be observed by using silver or gold plasmonic waveguides. Recently, plasmonic catalysis was established as a new exciting platform for heterogeneous catalytic reactions. Recent reports present remote-excitation surface catalytic reactions as a route to enhance the rate of chemical reactions, and offer a pathway to control surface catalytic reactions. In this review, we focus on recent advanced reports on silver plasmonic waveguide for remote-excitation surface catalytic reactions. First, the synthesis methods and characterization techniques of sivelr nanowire plasmonic waveguides are summarized, and the properties and physical mechanisms of plasmonic waveguides are presented in detail. Then, the applications of plasmonic waveguides including remote excitation fluorescence and SERS are introduced, and we focus on the field of remote-excitation surface catalytic reactions. Finally, forecasts are made for possible future applications for the remote-excitation surface catalysis by plasmonic waveguides in living cells.
  • Item
    Universal Tool for Single-Photon Circuits: Quantum Router Design
    (Basel : MDPI, 2020) Sultanov, Aydar; Greenberg, Yakov; Mutsenik, Evgeniya; Pitsun, Dmitry; Il’ichev, Evgeni
    We demonstrate that the non-Hermitian Hamiltonian approach can be used as a universal tool to design and describe a performance of single photon quantum electrodynamical circuits (cQED). As an example of the validity of this method, we calculate a novel six port quantum router, constructed from four qubits and three open waveguides. We have obtained analytical expressions, which describe the transmission and reflection coefficients of a single photon in general form taking into account the spread qubit’s parameters. We show that, due to naturally derived interferences, in situ tuning the probability of photon detection in desired ports
  • Item
    Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles
    (New York, NY [u.a.] : Springer, 2015) Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J.H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F.H.; Dutz, S.
    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona composition.
  • Item
    Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry
    (New York, NY [u.a.] : Springer, 2016) Gonchar, Kirill A.; Zubairova, Alsu A.; Schleusener, Alexander; Osminkina, Liubov A.; Sivakov, Vladimir
    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications.
  • Item
    Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell
    (Amsterdam [u.a.] : Elsevier, 2015) Thiele, Matthias; Götz, Isabell; Trautmann, Steffen; Müller, Robert; Csáki, Andrea; Henkel, Thomas; Fritzsche, Wolfgang
    Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.
  • Item
    Spatial resolution of tip-enhanced Raman spectroscopy – DFT assessment of the chemical effect
    (Cambridge : RSC Publ., 2016) Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker
    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle–substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.
  • Item
    2-LED-μspectrophotometer for rapid on-site detection of pathogens using noble-metal nanoparticle-based colorimetric assays
    (Basel : MDPI, 2020) Reuter, Cornelia; Urban, Matthias; Arnold, Manuel; Stranik, Ondrej; Csáki, Andrea; Fritzsche, Wolfgang
    Novel point-of-care compatible methods such as colorimetric assays have become increasingly important in the field of early pathogen detection. A simple and hand-held prototype device for carrying out DNA-amplification assay based on plasmonic nanoparticles in the colorimetric detection is presented. The low-cost device with two channels (sample and reference) consists of two spectrally different light emitting diodes (LEDs) for detection of the plasmon shift. The color change of the gold-nanoparticle-DNA conjugates caused by a salt-induced aggregation test is examined in particular. A specific and sensitive detection of the waterborne human pathogen Legionella pneumophila is demonstrated. This colorimetric assay, with a simple assay design and simple readout device requirements, can be monitored in real-time on-site. © 2020 by the authors.
  • Item
    Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles
    (Cambridge : RSC Publ., 2015) Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.
    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm−1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal–nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.
  • Item
    A manual and an automatic TERS based virus discrimination
    (Cambridge : RSC Publ., 2015) Olschewski, Konstanze; Kämmer, Evelyn; Stöckel, Stephan; Bocklitz, Thomas; Deckert-Gaudig, Tanja; Zell, Roland; Cialla-May, Dana; Weber, Karina; Deckert, Volker; Popp, Jürgen
    Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.
  • Item
    Systematic evaluation of particle loss during handling in the percutaneous transluminal angioplasty for eight different drug-coated balloons
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Heinrich, Andreas; Engler, Martin S.; Güttler, Felix V.; Matthäus, Christian; Popp, Jürgen; Teichgräber, Ulf K.-M.
    Paclitaxel drug coated balloons (DCBs) should provide optimal drug transfer exclusively to the target tissue. The aim of this study was to evaluate the particle loss by handling during angioplasty. A robotic arm was developed for systematic and reproducible drug abrasion experiments. The contact force on eight different commercially available DCB types was gradually increased, and high-resolution microscopic images of the deflated and inflated balloons were recorded. Three types of DCBs were classified: no abrasion of the drug in both statuses (deflated and inflated), significant abrasion only in the inflated status, and significant abrasion in both statuses. Quantitative measurements via image processing confirmed the qualitative classification and showed changes of the drug area between 2.25 and 45.73% (13.28 ± 14.29%) in the deflated status, and between 1.66 and 40.41% (21.43 ± 16.48%) in the inflated status. The structures and compositions of the DCBs are different, some are significantly more susceptible to drug loss. Particle loss by handling during angioplasty leads to different paclitaxel doses in the target regions for same DCB types. Susceptibility to involuntary drug loss may cause side effects, such as varying effective paclitaxel doses, which may explain variations in studies regarding the therapeutic outcome.