Search Results

Now showing 1 - 10 of 35
  • Item
    Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals
    (New York, NY : Wiley, 2022) Dammer, Karl-Heinz; Schirrmann, Michael
    BACKGROUND: Health scouting of crops by satellite, airplanes, unmanned aerial (UAV) and ground vehicles can only evaluate the crop from above. The visible leaves may show no disease symptoms, but lower, older leaves not visible from above can do. A mobile in-canopy sensor was developed, carried by a tractor to detect diseases in cereal crops. Photodiodes measure the reflected light in the red and infrared wavelength range at 10 different vertical heights in lateral directions. RESULTS: Significant differences occurred in the vegetation index NDVI of sensor levels operated inside and near the winter wheat canopy between infected (stripe rust: 2018, 2019 / leaf rust: 2020) and control plots. The differences were not significant at those sensor levels operated far above the canopy. CONCLUSIONS: Lateral reflectance measurements inside the crop canopy are able to distinguish between disease-infected and healthy crops. In future mobile in-canopy scouting could be an extension to the common above-canopy scouting praxis for making spraying decisions by the farmer or decision support systems. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  • Item
    Graphene transfer methods: A review
    (New York, NY [u.a.] : Springer, 2021) Ullah, Sami; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Bachmatiuk, Alicja; Tokarska, Klaudia; Trzebicka, Barbara; Fu, Lei; Rummeli, Mark H.
    Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.
  • Item
    Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry
    (Weinheim : Wiley-VCH, 2021) Kwiezinski, Carlo; Weller, Christian; van Pinxteren, Dominik; Brüggemann, Martin; Mertes, Stephan; Stratmann, Frank; Herrmann, Hartmut
    A method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min−1 isopropanol as post-column solvent and optimizing the ion source settings. Detection limits (S/N ≥ 3) were in the range of 0.075–25 μg L−1 and better than previously reported for 22 compounds. Recoveries of extraction typically range from 85 to 117%. The developed method was applied to three ambient samples, including two arctic flight samples, and one sample from Melpitz, a continental backround research site. A total of 32 different compounds were identified for all samples. From the arctic flight samples, organic tracers could be quantified for the first time with concentrations ranging from 0.1 to 17.8 ng m−3. Due to the minimal sample preparation, the beneficial figures of merit, and the broad range of accessible compounds, including very polar ones, the new method offers advantages over existing ones and enables a detailed analysis of organic marker compounds in atmospheric aerosol particles.
  • Item
    Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies†
    (Weinheim : Wiley-VCH, 2021) Hofstetter, Robert K.; Schulig, Lukas; Bethmann, Jonas; Grimm, Michael; Sager, Maximilian; Aude, Philipp; Keßler, Rebecca; Kim, Simon; Weitschies, Werner; Link, Andreas
    Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13C- and 32S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2-based extraction and separation techniques for potentially infective biomatrices.
  • Item
    Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts
    (New York, NY [u.a.] : Springer, 2021) Shen, Huidong; Yang, Mengmeng; Hao, Leiduan; Wang, Jinrui; Strunk, Jennifer; Sun, Zhenyu
    Engineering of defects in semiconductors provides an effective protocol for improving photocatalytic N2 conversion efficiency. This review focuses on the state-of-the-art progress in defect engineering of photocatalysts for the N2 reduction toward ammonia. The basic principles and mechanisms of thermal catalyzed and photon-induced N2 reduction are first concisely recapped, including relevant properties of the N2 molecule, reaction pathways, and NH3 quantification methods. Subsequently, defect classification, synthesis strategies, and identification techniques are compendiously summarized. Advances of in situ characterization techniques for monitoring defect state during the N2 reduction process are also described. Especially, various surface defect strategies and their critical roles in improving the N2 photoreduction performance are highlighted, including surface vacancies (i.e., anionic vacancies and cationic vacancies), heteroatom doping (i.e., metal element doping and nonmetal element doping), and atomically defined surface sites. Finally, future opportunities and challenges as well as perspectives on further development of defect-engineered photocatalysts for the nitrogen reduction to ammonia are presented. It is expected that this review can provide a profound guidance for more specialized design of defect-engineered catalysts with high activity and stability for nitrogen photochemical fixation.
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix
    (Washington, DC : ACS Publications, 2020) Fredi, Giulia; Simon, Frank; Sychev, Dmitrii; Melnyk, Inga; Janke, Andreas; Scheffler, Christina; Zimmerer, Cordelia
    Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler–matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule–matrix adhesion.
  • Item
    DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation
    (Washington, DC : ACS Publications, 2020) Köhler, Tony; Patsis, Panagiotis A.; Hahn, Dominik; Ruland, André; Naas, Carolin; Müller, Martin; Thiele, Julian
    Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 μUnits (μU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 μU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aβ) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aβ peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aβ peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aβ peptide oxidation.
  • Item
    Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning
    (Amsterdam : Elsevier, 2021) Ernst, Owen C.; Uebel, David; Kayser, Stefan; Lange, Felix; Teubner, Thomas; Boeck, Torsten
    Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020
  • Item
    Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis
    (Amsterdam [u.a.] : Elsevier, 2021) Koch, M.; Apushkinskaya, N.; Zolotukhina, E.V.; Silina, Y.E.
    Here, fundamental aspects affecting template-assisted engineering of oxidase-associated peroxide oxidation co-catalysis of the modeled microanalytical system based on the hybrid palladium nanoparticles (Pd-NPs) with tailored functional properties were studied. By an accurate tuning and validation of the experimental setup, a modular Pd-NPs-doped one-pot/one-electrode amperometric nanobiosensor for advanced multiplex analyte detection was constructed. The specific operational conditions (electrochemical read-out mode, pH, regeneration procedure) of the modular one-pot/one-electrode nanobiosensor allowed a reliable sensing of L-lactate (with linear dynamic range, LDR = 500 µM – 2 mM, R2 = 0.977), D-glucose (with LDR = 200 µM – 50 mM, R2 = 0.987), hydrogen peroxide (with LDR = 20 µM – 100 mM, R2 = 0.998) and glutaraldehyde (with LDR = 1 – 100 mM, R2 = 0.971). In addition, mechanistic aspects influencing the performance of Pd-NPs-doped one-pot/one-electrode for multiplex analyte sensing were studied in detail. The designed one-pot/one-electrode amperometric nanobiosensor showed a thin layer electrochemical behavior that greatly enhanced electron transfer between the functional hybrid layer and the electrode. Finally, a specific regeneration procedure of the hybrid one-pot/one-electrode and algorithm towards its usage for modular biocatalysis were developed. The reported strategy can readily be considered as a guideline towards the fabrication of commercialized nanobiosensors with tailored properties for advanced modular biocatalysis.