Search Results

Now showing 1 - 3 of 3
  • Item
    Using Bayesian Networks to Investigate the Influence of Subseasonal Arctic Variability on Midlatitude North Atlantic Circulation
    (Boston, Mass. [u.a.] : AMS, 2021) Harwood, Nathanael; Hall, Richard; Di Capua, Giorgia; Russell, Andrew; Tucker, Allan
    Recent enhanced warming and sea ice depletion in the Arctic have been put forward as potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes relative to other drivers remains unknown. Arctic–midlatitude connections in the North Atlantic region are particularly complex but important due to the frequent occurrence of severe winters in recent decades. Here, dynamic Bayesian networks with hidden variables are introduced to the field to assess their suitability for teleconnection analyses. Climate networks are constructed to analyze North Atlantic circulation variability at 5-day to monthly time scales during the winter months of the years 1981–2018. The inclusion of a number of Arctic, midlatitude, and tropical variables allows for an investigation into the relative role of Arctic influence compared to internal atmospheric variability and other remote drivers. A robust covariability between regions of amplified Arctic warming and two definitions of midlatitude circulation is found to occur entirely within winter at submonthly time scales. Hidden variables incorporated in networks represent two distinct modes of stratospheric polar vortex variability, capturing a periodic shift between average conditions and slower anomalous flow. The influence of the Barents–Kara Seas region on the North Atlantic Oscillation is found to be the strongest link at 5- and 10-day averages, while the stratospheric polar vortex strongly influences jet variability on monthly time scales.
  • Item
    Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
    (Munich : EGU, 2021) Reinecke, Robert; Müller Schmied, Hannes; Trautmann, Tim; Andersen, Lauren Seaby; Burek, Peter; Flörke, Martina; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Koutroulis, Aristeidis; Pokhrel, Yadu; Thiery, Wim; Wada, Yoshihide; Yusuke, Satoh; Döll, Petra
    Billions of people rely on groundwater as being an accessible source of drinking water and for irrigation, especially in times of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will impact groundwater systems globally and, thus, the availability of this vital resource. Groundwater recharge is an important indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways (RCPs). Results suggest that projected changes strongly vary among the different GHM–GCM combinations, and statistically significant changes are only computed for a few regions of the world. Statistically significant GWR increases are projected for northern Europe and some parts of the Arctic, East Africa, and India. Statistically significant decreases are simulated in southern Chile, parts of Brazil, central USA, the Mediterranean, and southeastern China. In some regions, reversals of groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of changing atmospheric CO2 and climate on vegetation and, thus, evapotranspiration, we investigate how estimated changes in GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge changes of up to 100 mm per year. Most GHMs with active vegetation simulate less severe decreases in groundwater recharge than GHMs without active vegetation and, in some regions, even increases instead of decreases are simulated. However, in regions where GCMs predict decreases in precipitation and where groundwater availability is the most important, model agreement among GHMs with active vegetation is the lowest. Overall, large uncertainties in the model outcomes suggest that additional research on simulating groundwater processes in GHMs is necessary.
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.