Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced survival of multi-species biofilms under stress is promoted by low-abundant but antimicrobial-resistant keystone species
    (New York, NY [u.a.] : Science Direct, 2022) Wicaksono, Wisnu Adi; Erschen, Sabine; Krause, Robert; Müller, Henry; Cernava, Tomislav; Berg, Gabriele
    Multi-species biofilms are more resistant against stress compared to single-species biofilms. However, the mechanisms underlying this common observation remain elusive. Therefore, we studied biofilm formation of well-known opportunistic pathogens (Acinetobacter baumanii, Enterococcus faecium, Escherichia coli, Staphylococcus haemolyticus and Stenotrophomonas maltophilia) in various approaches. Synergistic effects in their multi-species biofilms were observed. Using metatranscriptomics, changes in the gene expression of the involved members became evident, and provided explanations for the improved survivability under nutrient limitation and exposure to disinfectants. Genes encoding proteins for vitamin B6 synthesis and iron uptake were linked to synergism in the multi-species biofilm under nutrient-limited conditions. Our study indicates that sub-lethal concentrations of an alcohol-based disinfectant enhance biofilm yields in multi-species assemblages. A reduction of the dominant taxa in the multi-species biofilm under disinfectant pressure allowed minor taxa to bloom. The findings underline the importance of minor but antimicrobial-resistant species that serve as "protectors" for the whole assemblage due to upregulation of genes involved in defence mechanisms and biofilm formation. This ultimately results in an increase in the total yield of the multi-species biofilm. We conclude that inter-species interactions may be crucial for the survival of opportunistic pathogens; especially under conditions that are typically found under hospital settings.
  • Item
    Reduce and refine: Plasma treated water vs conventional disinfectants for conveyor-belt cleaning in sustainable food-production lines
    (Melville, NY : American Inst. of Physics, 2021) Weihe, Thomas; Schnabel, Uta; Winter, Hauke; Möller, Timon; Stachowiak, Jörg; Neumann, Sabine; Schlüter, Oliver; Ehlbeck, Jörg
    Sustainable and microbiologically secure foodstuff production lines are of increasing scientific interest and are in the focus of recent research programs. Additionally, they are of great importance for the production industry due to the prevention of food-borne illnesses caused by pathogens such as Salmonella sp., Listeria monocytogenes, or Escherichia coli. These pathogens are responsible for production losses, loss of customer acceptance, and severe food-borne illnesses. A pathogenic threat is frequently combated with sanitizing steps of the production lines. For conveyor band cleaning, this study compares the cleaning abilities of nitric acid (HNO3) and plasma treated water (PTW), which have been sprayed via a commercially available nozzle on two different polymeric surfaces (polysiloxane and polyurethane). Additionally, the cleaning agents HNO3 and PTW have been characterized through their pH and their conductivity. These findings have been underpinned by experiments that focus on a possible influence of nozzle abrasion, such as brass and stainless-steel nanoparticles, on the antimicrobial potential of PTW and HNO3. Adversely acting effects like an enhanced abrasion of conveyer band materials due to PTW or HNO3 treatment have been checked by using light microscopic micrographs and topographic scans in high-resolution mode. Based on the presented results of the experiments, the suitability of an in-place sanitation step in foodstuff production lines has been demonstrated on a laboratory scale.