Search Results

Now showing 1 - 6 of 6
  • Item
    Meteor radar observations of mesopause region long-period temperature oscillations
    (Göttingen : Copernicus, 2016) Jacobi, Ch.; Samtleben, N.; Stober, G.
    Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.
  • Item
    Validation of the radiation pattern of the VHF MST radar MAARSY by scattering off a sounding rocket's payload
    (Göttingen : Copernicus Publications, 2015) Renkwitz, T.; Schult, C.; Latteck, R.; Stober, G.
    The Middle Atmosphere Alomar Radar System (MAARSY) is a monostatic radar with an active phased array antenna designed for studies of phenomena in the mesosphere and lower thermosphere. Its design, in particular the flexible beam forming and steering capability, makes it a powerful instrument to perform observations with high angular and temporal resolution. For the configuration and analysis of experiments carried out with the radar it is essential to have knowledge of the actual radiation pattern. Therefore, during the time since the radar was put into operation various active and passive experiments have been performed to gain knowledge of the radiation pattern. With these experiments the beam pointing accuracy, the beam width and phase distribution of the antenna array were investigated. Here, the use of a sounding rocket and its payload as a radar target is described which was launched in the proximity of the radar. The analysis of these observations allows the detailed investigation of the two-way radiation pattern for different antenna array sizes and beam pointing positions.
  • Item
    Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar
    (Wien [u.a.] : Springer, 2019) Strotkamp, Michael; Munk, Alexander; Jungbluth, Bernd; Hoffmann, Hans-Dieter; Höffner, Josef
    In this work, the design of a diode-pumped Alexandrite ring laser in Q-switched single-longitudinal-mode (SLM) operation for a spaceborne lidar mission is presented. The laser is pumped by a self-developed fiber-coupled laser diode pump device and yields a pulse energy of 1.7 mJ at a repetition rate of 500 Hz with an excellent beam quality of M2 < 1.1. By seeding the resonator with a narrow band diode laser, SLM operation with a linewidth of approximately 10 MHz is achieved. The electro-optical efficiency of 2% is the highest achieved for all Alexandrite lasers in SLM operation and reasonable for space operation. The performance analysis as well as benchmarking with the space-qualified mounting technology points out the TRL and the remaining effort for the development of the technology. An estimation of the requirements for a spaceborne resonance lidar mission underlines the suitability of such a lidar system with a diode-pumped Alexandrite laser as the beam source.
  • Item
    Physics in the mesosphere/lower thermosphere: A personal perspective
    (Lausanne : Frontiers Media, 2022) Lübken, Franz-Josef
    The scope of this paper is to present some progress being made in the last few decades regarding some aspects of physical processes in the mesosphere/lower thermosphere and to point to some open questions. This summary is presented from a personal perspective, i.e., this is not a review of a certain science topic. Most citations reflect my own work or are representative examples only. They are not meant to be complete or comprehensive.
  • Item
    Determination of the Azimuthal Extent of Coherent E‐Region Scatter Using the ICEBEAR Linear Receiver Array
    (Hoboken, NJ : Wiley, 2021) Huyghebaert, Devin; McWilliams, Kathryn; Hussey, Glenn; Galeschuk, Draven; Chau, Jorge L.; Vierinen, Juha
    The Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR) is a VHF coherent scatter radar that operates with a field-of-view centered on 58°N, 106°W and measures characteristics of ionospheric E-region plasma density irregularities. The initial operations of ICEBEAR utilized a wavelength-spaced linear receiving array to determine the angle of arrival of the ionospheric scatter at the receiver site. Initially only the shortest baselines were used to determine the angle of arrival of the scatter. This publication uses this linear antenna array configuration and expands on the initial angle of arrival determination by including all the cross-spectra available from the antenna array to determine both the azimuthal angle of arrival and the azimuthal extent of the incoming ionospheric scatter. This is accomplished by fitting Gaussian distributions to the complex coherence of the signal between different antennas and deriving the azimuthal angle and extent based on the best fit. Fourteen hours of data during an active ionospheric period (March 10, 2018, 0–14 UT) were analyzed to investigate the Gaussian fitting procedure and determine its feasibility for implementation with ICEBEAR. A comparison between mapped scatter, both neglecting azimuthal extent and including azimuthal extent is presented. It demonstrates that the azimuthal extent of the ionospheric E-region scatter is very important for accurately portraying and analyzing the ICEBEAR measurements.
  • Item
    Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances
    (Hoboken, NJ : Wiley, 2018-3-30) Reinisch, Bodo; Galkin, Ivan; Belehaki, Anna; Paznukhov, Vadym; Huang, Xueqin; Altadill, David; Buresova, Dalia; Mielich, Jens; Verhulst, Tobias; Stankov, Stanimir; Blanch, Estefania; Kouba, Daniel; Hamel, Ryan; Kozlov, Alexander; Tsagouri, Ioanna; Mouzakis, Angelos; Messerotti, Mauro; Parkinson, Murray; Ishii, Mamoru
    Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real-time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde-to-Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high-frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content-based methodologies is currently being attempted, and the results will be the objective of a follow-up paper.