Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Ten-year climatology of potassium number density at 54° N, 12° E

2017, Lautenbach, J., Höffner, J., Lübken, F.-J., Kopp, M., Gerding, M.

In the years from 2002 to 2012 potassium densities observations were performed in the mesopause region at Kühlungsborn using a potassium Doppler lidar. The 10-year diurnal data set comprises 5090 h of potassium number densities at 741 days with 25.2% under full daylight conditions. Potassium number densities show a clear semi-annual variation with two broad maxima reoccurring every year. The first maximum occurs in summer and lasts for about 4 months (May–August) with number densities up to 60 atoms/cc. The second maximum is observed from early December to late February with densities up to 30 atoms/cc. Both the peak density and the column density are higher at solstices than at equinoxes. The large data set shows little variation of the mean layer over the 10 years.

Loading...
Thumbnail Image
Item

Impacts of a sudden stratospheric warming on the mesospheric metal layers

2017, Feng, Wuhu, Kaifler, Bernd, Marsh, Daniel R., Höffner, Josef, Hoppe, Ulf-Peter, Williams, Bifford P., Plane, John M.C.

We report measurements of atomic sodium, iron and temperature in the mesosphere and lower thermosphere (MLT) made by ground-based lidars at the ALOMAR observatory (69°N, 16°E) during a major sudden stratospheric warming (SSW) event that occurred in January 2009. The high resolution temporal observations allow the responses of the Na and Fe layers to the SSW at high northern latitudes to be investigated. A significant cooling with temperatures as low as 136 K around 90 km was observed on 22–23 January 2009, along with substantial depletions of the Na and Fe layers (an ~80% decrease in the column abundance with respect to the mean over the observation period). The Whole Atmosphere Community Climate Model (WACCM) incorporating the chemistry of Na, Fe, Mg and K, and nudged with reanalysis data below 60 km, captures well the timing of the SSW, although the extent of the cooling and consequently the depletion in the Na and Fe layers is slightly underestimated. The model also predicts that the perturbations to the metal layers would have been observable even at equatorial latitudes. The modelled Mg layer responds in a very similar way to Na and Fe, whereas the K layer is barely affected by the SSW because of the enhanced conversion of K+ ions to K atoms at the very low temperatures.

Loading...
Thumbnail Image
Item

Making limb and nadir measurements comparable: A common volume study of PMC brightness observed by Odin OSIRIS and AIM CIPS

2017, Benze, Susanne, Gumbel, Jörg, Randall, Cora E., Karlsson, Bodil, Hultgren, Kristoffer, Lumpe, Jerry D., Baumgarten, Gerd

Combining limb and nadir satellite observations of Polar Mesospheric Clouds (PMCs) has long been recognized as problematic due to differences in observation geometry, scattering conditions, and retrieval approaches. This study offers a method of comparing PMC brightness observations from the nadir-viewing Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument and the limb-viewing Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). OSIRIS and CIPS measurements are made comparable by defining a common volume for overlapping OSIRIS and CIPS observations for two northern hemisphere (NH) PMC seasons: NH08 and NH09. We define a scattering intensity quantity that is suitable for either nadir or limb observations and for different scattering conditions. A known CIPS bias is applied, differences in instrument sensitivity are analyzed and taken into account, and effects of cloud inhomogeneity and common volume definition on the comparison are discussed. Not accounting for instrument sensitivity differences or inhomogeneities in the PMC field, the mean relative difference in cloud brightness (CIPS - OSIRIS) is −102 ± 55%. The differences are largest for coincidences with very inhomogeneous clouds that are dominated by pixels that CIPS reports as non-cloud points. Removing these coincidences, the mean relative difference in cloud brightness reduces to −6 ± 14%. The correlation coefficient between the CIPS and OSIRIS measurements of PMC brightness variations in space and time is remarkably high, at 0.94. Overall, the comparison shows excellent agreement despite different retrieval approaches and observation geometries.

Loading...
Thumbnail Image
Item

Long term trends of mesopheric ice layers: A model study

2021, Lübken, Franz-Josef, Baumgarten, Gerd, Berger, Uwe

Trends derived from the Leibniz-Institute Middle Atmosphere Model (LIMA) and the MIMAS ice particle model (Mesospheric Ice Microphysics And tranSport model) are presented for a period of 138 years (1871–2008) and for middle, high, and arctic latitudes, namely 58°N, 69°N, and 78°N, respectively. We focus on the analysis of mesospheric ice layers (NLC, noctilucent clouds) in the main summer season (July) and on yearly mean values. Model runs with and without an increase of carbon dioxide and water vapor (from methane oxidation) concentrations are performed. Trends are most prominent after ~1960 when the increase of both CO2 and H2O accelerates. It is important to distinguish between tendencies on geometric altitudes and on given pressure levels converted to altitudes (‘pressure altitudes’). Negative trends of (geometric) NLC altitudes are primarily due to cooling below NLC altitudes caused by CO2 increase. Increases of ice particle radii and NLC brightness with time are mainly caused by an enhancement of water vapor. Several ice layer and background parameter trends are similar at high and arctic latitudes but are substantially different at middle latitudes. This concerns, for example, occurrence rates, ice water content (IWC), and number of ice particles in a column. Considering the time period after 1960, geometric altitudes of NLC decrease by approximately 260 m per decade, and brightness increases by roughly 50% (1960–2008), independent of latitude. NLC altitudes decrease by approximately 15–20 m per increase of CO2 by 1 ppmv. The number of ice particles in a column and also at the altitude of maximum backscatter is nearly constant with time. At all latitudes, yearly mean NLC appear at altitudes where temperatures are close to 145±1 K. Ice particles are present nearly all the time at high and arctic latitudes, but are much less common at middle latitudes. Ice water content and maximum backscatter (βmax) are highly correlated, where the slope depends on latitude. This allows to combine data sets from satellites and lidars. Furthermore, IWC and the concentration of water vapor at βmax are also strongly correlated. Nearly all trends depend on a lower limit applied for βmax, e.g., IWC and occurrence rates. Results from LIMA/MIMAS are in very good agreement with observations.