Search Results

Now showing 1 - 10 of 70
  • Item
    The Hiccup: a dynamical coupling process during the autumn transition in the Northern Hemisphere – similarities and differences to sudden stratospheric warmings
    (Katlenburg, Lindau : Copernicus, 2015) Matthias, V.; Shepherd, T.G.; Hoffmann, P.; Rapp, M.
    Sudden stratospheric warmings (SSWs) are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs) with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the "hiccup", and which acts like a "mini SSW", i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69° N, 16° E) for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
  • Item
    First experimental verification of summertime mesospheric momentum balance based on radar wind measurements at 69° N
    (Katlenburg, Lindau : Copernicus, 2015) Placke, M.; Hoffmann, P.; Rapp, M.
    Gravity waves (GWs) greatly influence the background state of the middle atmosphere by imposing their momentum on the mean flow upon breaking and by thus driving, e.g., the upper mesospheric summer zonal wind reversal. In this situation momentum is conserved by a balance between the vertical divergence of GW momentum flux (the so-called GW drag) and the Coriolis acceleration of the mean meridional wind. In this study, we present first quantitative mean annual cycles of these two balancing quantities from the medium frequency Doppler radar at the polar site Saura (SMF radar, 69° N, 16° E). Three-year means for 2009 through 2011 clearly show that the observed zonal momentum balance between 70 and 100 km with contributions from GWs only is fulfilled during summer when GW activity is strongest and more stable than in winter. During winter, the balance between GW drag and Coriolis acceleration of the mean meridional wind is not existent, which is likely due to the additional contribution from planetary waves, which are not considered by the present investigation. The differences in the momentum balance between summer and winter conditions are additionally clarified by 3-month mean vertical profiles for summer 2010 and winter 2010/2011.
  • Item
    High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – Part 1: frequency spectrum
    (Katlenburg, Lindau : Copernicus, 2018-4-3) Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph
    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb–Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s−1) are much steeper than during quiet periods (with wind velocity < 10 m s−1). The distribution of spectral slopes is roughly symmetric with a maximum at −5/3 during active periods, whereas a very asymmetric distribution with a maximum at around −1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of −5/3 at a wind velocity of 10 m s−1 and then roughly maintain this slope (−5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.
  • Item
    Photocurrent modelling and experimental confirmation for meteoric smoke particle detectors on board atmospheric sounding rockets
    (Katlenburg-Lindau : Copernicus, 2018-9-20) Giono, Gabriel; Strelnikov, Boris; Asmus, Heiner; Staszak, Tristan; Ivchenko, Nickolay; Lübken, Franz-Josef
    Characterising the photoelectron current induced by the Sun's UV radiation is crucial to ensure accurate daylight measurements from particle detectors. This article lays out the methodology used to address this problem in the case of the meteoric smoke particle detectors (MSPDs), developed by the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) and flown on board the PMWEs (Polar Mesosphere Winter Echoes) sounding rockets in April 2018. The methodology focuses on two complementary aspects: modelling and experimental measurements. A detailed model of the MSPD photocurrent was created based on the expected solar UV flux, the atmospheric UV absorption as a function of height by molecular oxygen and ozone, the photoelectric yield of the material coating the MSPD as a function of wavelength, the index of refraction of these materials as a function of wavelength and the angle of incidence of the illumination onto the MSPD. Due to its complex structure, composed of a central electrode shielded by two concentric grids, extensive ray-tracing calculations were conducted to obtain the incidence angles of the illumination on the central electrode, and this was done for various orientations of the MSPD in respect to the Sun. Results of the modelled photocurrent at different heights and for different materials, as well as for different orientations of the detector, are presented. As a pre-flight confirmation, the model was used to reproduce the experimental measurements conducted by Robertson et al. (2014) and agrees within an order of magnitude. An experimental setup for the calibration of the MSPD photocurrent is also presented. The photocurrent induced by the Lyman-alpha line from a deuterium lamp was recorded inside a vacuum chamber using a narrowband filter, while a UV-sensitive photodiode was used to monitor the UV flux. These measurements were compared with the model prediction, and also matched within an order of magnitude. Although precisely modelling the photocurrent is a challenging task, this article quantitatively improved the understanding of the photocurrent on the MSPD and discusses possible strategies to untangle the meteoric smoke particles (MSPs) current from the photocurrent recorded in-flight.
  • Item
    Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
    (Katlenburg-Lindau : European Geosciences Union, 2021) Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen
    Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer-Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions. © Author(s) 2021.
  • Item
    Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
    (Katlenburg-Lindau : European Geosciences Union, 2021) Geldenhuys, Markus; Preusse, Peter; Krisch, Isabell; Zülicke, Christoph; Ungermann, Jörn; Ern, Manfred; Friedl-Vallon, Felix; Riese, Martin
    To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13km of altitude with a horizontal wavelength of 330km, a vertical wavelength of 2km and a large temperature amplitude of 4.5K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25-72ms-1) the GW packet has a slow vertical group velocity of 0.05-0.2ms-1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards ray-tracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out-of-balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out-of-balance geostrophic components. The out-of-balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography-jet mechanism.
  • Item
    A new model of meteoric calcium in the mesosphere and lower thermosphere
    (Katlenburg-Lindau : EGU, 2018-10-16) Plane, John M. C.; Feng, Wuhu; Gómez Martín, Juan Carlos; Gerding, Michael; Raizada, Shikha
    Meteoric ablation produces layers of metal atoms in the mesosphere and lower thermosphere (MLT). It has been known for more than 30 years that the Ca atom layer is depleted by over 2 orders of magnitude compared with Na, despite these elements having nearly the same elemental abundance in chondritic meteorites. In contrast, the Ca+ ion abundance is depleted by less than a factor of 10. To explain these observations, a large database of neutral and ion–molecule reaction kinetics of Ca species, measured over the past decade, was incorporated into the Whole Atmosphere Community Climate Model (WACCM). A new meteoric input function for Ca and Na, derived using a chemical ablation model that has been tested experimentally with a Meteoric Ablation Simulator, shows that Ca ablates almost 1 order of magnitude less efficiently than Na. WACCM-Ca simulates the seasonal Ca layer satisfactorily when compared with lidar observations, but tends to overestimate Ca+ measurements made by rocket mass spectrometry and lidar. A key finding is that CaOH and CaCO3 are very stable reservoir species because they are involved in essentially closed reaction cycles with O2 and O. This has been demonstrated experimentally for CaOH, and in this study for CaCO3 using electronic structure and statistical rate theory. Most of the neutral Ca is therefore locked in these reservoirs, enabling rapid loss through polymerization into meteoric smoke particles, and this explains the extreme depletion of Ca.
  • Item
    A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results
    (Katlenburg-Lindau : European Geosciences Union, 2021) Stude, Joan; Aufmhoff, Heinfried; Schlager, Hans; Rapp, Markus; Arnold, Frank; Strelnikov, Boris
    We present a novel rocket-borne ion mass spectrometer named ROMARA (ROcket-borne MAss spectrometer for Research in the Atmosphere) for measuring atmospheric positive and negative ions (atomic, molecular and cluster ions) and positively and negatively charged meteor smoke particles. Our ROMARA instrument has, compared to previous rocket-borne ion mass spectrometers, a markedly larger mass range of up to m=z 2000 and a larger sensitivity, particularly for meteor smoke particle detection. The major objectives of this first ROMARA flight included the following: a functional test of the ROMARA instrument, measurements between 55 and 121 km in the mass range of atmospheric positive and negative ions, a first attempt to conduct mass spectrometric measurements in the mass range of meteor smoke particles with mass-to-charge ratios up to m=z 2000, and measurements inside a polar mesospheric winter echo layer as detected by ground-based radar. Our ROMARA measurements took place on the Arctic island of Andøya, Norway, at around noon in April 2018 and represented an integral part of the polar mesospheric winter radar echo (PMWE) rocket campaign. During the rocket flight, ROMARA was operated in a measurement mode, offering maximum sensitivity and the ability to qualitatively detect total ion signatures even beyond its mass-resolving mass range. On this first ROMARA flight we were able to meet all of our objectives. We detected atmospheric species including positive atomic, molecular and cluster ions along with negative molecular ions up to about m=z 100. Above m=z 2000, ROMARA measured strong negative-ion signatures, which are likely due to negatively charged meteor smoke particles. © 2021 Author(s).
  • Item
    VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
    (Katlenburg-Lindau : European Geosciences Union, 2021) Lübken, Franz-Josef; Höffner, Josef
    A new concept for a cluster of compact lidar systems named VAHCOLI (Vertical And Horizontal COverage by LIdars) is presented, which allows for the measurement of temperatures, winds, and aerosols in the middle atmosphere (10 110 km) with high temporal and vertical resolution of minutes and some tens of meters, respectively, simultaneously covering horizontal scales from a few hundred meters to several hundred kilometers ( four-dimensional coverage ). The individual lidars ( units ) being used in VAHCOLI are based on a diode-pumped alexandrite laser, which is currently designed to detect potassium (D 770 nm), and on sophisticated laser spectroscopy measuring all relevant frequencies (seeder laser, power laser, backscattered light) with high temporal resolution (2 ms) and high spectral resolution applying Doppler-free spectroscopy. The frequency of the lasers and the narrowband filter in the receiving system are stabilized to typically 10 100 kHz, which is a factor of roughly 105 smaller than the Doppler-broadened Rayleigh signal. Narrowband filtering allows for the measurement of Rayleigh and/or resonance scattering separately from the aerosol (Mie) signal during both night and day. Lidars used for VAHCOLI are compact (volume: 1m3) and multi-purpose systems which employ contemporary electronic, optical, and mechanical components. The units are designed to autonomously operate under harsh field conditions in remote locations. An error analysis with parameters of the anticipated system demonstrates that temperatures and line-of-sight winds can be measured from the lower stratosphere to the upper mesosphere with an accuracy of (0.1 5)K and (0.1 10)ms1, respectively, increasing with altitude. We demonstrate that some crucial dynamical processes in the middle atmosphere, such as gravity waves and stratified turbulence, can be covered by VAHCOLI with sufficient temporal, vertical, and horizontal sampling and resolution. The four-dimensional capabilities of VAHCOLI allow for the performance of time-dependent analysis of the flow field, for example by employing Helmholtz decomposition, and for carrying out statistical tests regarding, for example, intermittency and helicity. The first test measurements under field conditions with a prototype lidar were performed in January 2020. The lidar operated successfully during a 6-week period (night and day) without any adjustment. The observations covered a height range of 5 100 km and demonstrated the capability and applicability of this unit for the VAHCOLI concept.
  • Item
    Intercomparison of middle-atmospheric wind in observations and models
    (Katlenburg-Lindau : Copernicus, 2018-4-6) Rüfenacht, Rolf; Baumgarten, Gerd; Hildebrand, Jens; Schranz, Franziska; Matthias, Vivien; Stober, Gunter; Lübken, Franz-Josef; Kämpfer, Niklaus
    Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3∘ N, 16.0∘ E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.