Search Results

Now showing 1 - 10 of 78
  • Item
    Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries
    (Basel : MDPI, 2018-2-6) Madian, Mahmoud; Eychmüller, Alexander; Giebeler, Lars
    The lithium ion battery (LIB) has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Influence of Fe Buffer Layer on Co-Doped BaFe2As2Superconducting Thin Films
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2015) Bonavolontà, C.; de Lisio, C.; Valentino, M.; Laviano, F.; Pepe, G.P.; Kurth, F.; Iida, K.; Ichinose, A.; Tsukada, I.
    A systematic characterization of Co-doped BaFe2As2 (Ba-122) thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Electron beam induced dehydrogenation of MgH2 studied by VEELS
    (Cham : Springer International Publishing AG, 2016) Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd
    Nanosized or nanoconfined hydrides are promising materials for solid-state hydrogen storage. Most of these hydrides, however, degrade fast during the structural characterization utilizing transmission electron microscopy (TEM) upon the irradiation with the imaging electron beam due to radiolysis. We use ball-milled MgH2 as a reference material for in-situ TEM experiments under low-dose conditions to study and quantitatively understand the electron beam-induced dehydrogenation. For this, valence electron energy loss spectroscopy (VEELS) measurements are conducted in a monochromated FEI Titan3 80–300 microscope. From observing the plasmonic absorptions it is found that MgH2 successively converts into Mg upon electron irradiation. The temporal evolution of the spectra is analyzed quantitatively to determine the thickness-dependent, characteristic electron doses for electron energies of both 80 and 300 keV. The measured electron doses can be quantitatively explained by the inelastic scattering of the incident high-energy electrons by the MgH2 plasmon. The obtained insights are also relevant for the TEM characterization of other hydrides.
  • Item
    Exciton dispersion in para-quaterphenyl: Significant molecular interactions beyond Coulomb coupling
    (New York, NY : American Inst. of Physics, 2021) Graf, Lukas; Krupskaya, Yulia; Büchner, Bernd; Knupfer, Martin
    We have experimentally determined the momentum dependence of the electronic excitation spectra of para-quaterphenyl single crystals. The parallel arrangement of para-quaterphenyl molecules results in a strong Coulomb coupling of the molecular excitons. Such crystals have been considered to be a very good realization of the Frenkel exciton model, including the formation of H-type aggregates. Our data reveal an unexpected exciton dispersion of the upper Davydov component, which cannot be rationalized in terms of inter-molecular Coulomb coupling of the excitons. A significant reduction of the nearest neighbor coupling due to additional charge-transfer processes is able to provide an explanation of the data. Furthermore, the spectral onset of the excitation spectrum, which represents a heavy exciton resulting from exciton-phonon coupling, also shows a clear dispersion, which had been unknown so far. Finally, an optically forbidden excitation about 1 eV above the excitation onset is observed. © 2021 Author(s).
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, Andrés Fabián; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives
    (Amsterdam : Elsevier, 2021) Li, Fei; Li, Yang; Qu, Jiang; Wang, Jinhui; Bandari, Vineeth Kumar; Zhu, Feng; Schmidt, Oliver G.
    The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.
  • Item
    Cryogenic-temperature-induced structural transformation of a metallic glass
    (London [u.a.] : Taylor & Francis, 2016-11-30) Bian, Xilei; Wang, Gang; Wang, Qing; Sun, Baoan; Hussain, Ishtiaq; Zhai, Qijie; Mattern, Norbert; Bednarčík, Jozef; Eckert, Jürgen
    The plasticity of metallic glasses depends largely on the atomic-scale structure. However, the details of the atomic-scale structure, which are responsible for their properties, remain to be clarified. In this study, in-situ high-energy synchrotron X-ray diffraction and strain-rate jump compression tests at different cryogenic temperatures were carried out. We show that the activation volume of flow units linearly depends on temperature in the non-serrated flow regime. A plausible atomic deformation mechanism is proposed, considering that the activated flow units mediating the plastic flow originate from the medium-range order and transit to the short-range order with decreasing temperature.
  • Item
    Applications of Carbon Nanotubes in the Internet of Things Era
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Pang, Jinbo; Bachmatiuk, Alicja; Yang, Feng; Liu, Hong; Zhou, Weijia; Rümmeli, Mark H.; Cuniberti, Gianaurelio
    The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.