Search Results

Now showing 1 - 10 of 13
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Influence of Growth Polarity Switching on the Optical and Electrical Properties of GaN/AlGaN Nanowire LEDs
    (Basel : MDPI, 2021) Reszka, Anna; Korona, Krzysztof P.; Tiagulskyi, Stanislav; Turski, Henryk; Jahn, Uwe; Kret, Slawomir; Bożek, Rafał; Sobanska, Marta; Zytkiewicz, Zbigniew R.; Kowalski, Bogdan J.
    For the development and application of GaN-based nanowire structures, it is crucial to understand their fundamental properties. In this work, we provide the nano-scale correlation of the morphological, electrical, and optical properties of GaN/AlGaN nanowire light emitting diodes (LEDs), observed using a combination of spatially and spectrally resolved cathodoluminescence spectroscopy and imaging, electron beam-induced current microscopy, the nano-probe technique, and scanning electron microscopy. To complement the results, the photo- and electro-luminescence were also studied. The interpretation of the experimental data was supported by the results of numerical simulations of the electronic band structure. We characterized two types of nanowire LEDs grown in one process, which exhibit top facets of different shapes and, as we proved, have opposite growth polarities. We show that switching the polarity of nanowires (NWs) from the N- to Ga-face has a significant impact on their optical and electrical properties. In particular, cathodoluminescence studies revealed quantum wells emissions at about 3.5 eV, which were much brighter in Ga-polar NWs than in N-polar NWs. Moreover, the electron beam-induced current mapping proved that the p–n junctions were not active in N-polar NWs. Our results clearly indicate that intentional polarity inversion between the n- and p-type parts of NWs is a potential path towards the development of efficient nanoLED NW structures.
  • Item
    Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing
    (Basel : MDPI, 2021) Pérez, Eduardo; Pérez-Ávila, Antonio Javier; Romero-Zaliz, Rocío; Mahadevaiah, Mamathamba Kalishettyhalli; Pérez-Bosch Quesada, Emilio; Roldán, Juan Bautista; Jiménez-Molinos, Francisco; Wenger, Christian
    Accomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1 k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8 × 8 vector-matrix-multiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6% compared with the use of non-optimized parameters.
  • Item
    An Assessment of Deep Learning Models and Word Embeddings for Toxicity Detection within Online Textual Comments
    (Basel : MDPI, 2021) Dessì, Danilo; Recupero, Diego Reforgiato; Sack, Harald
    Today, increasing numbers of people are interacting online and a lot of textual comments are being produced due to the explosion of online communication. However, a paramount inconvenience within online environments is that comments that are shared within digital platforms can hide hazards, such as fake news, insults, harassment, and, more in general, comments that may hurt someone’s feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate online communication. Deep learning technologies have recently delivered impressive performance within Natural Language Processing applications encompassing Sentiment Analysis and emotion detection across numerous datasets. Such models do not need any pre-defined hand-picked features, but they learn sophisticated features from the input datasets by themselves. In such a domain, word embeddings have been widely used as a way of representing words in Sentiment Analysis tasks, proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and word embeddings to detect six different types of toxicity within online comments. In doing so, the most suitable deep learning layers and state-of-the-art word embeddings for identifying toxicity are evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked word embeddings are a good choice for this task.
  • Item
    Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles
    (Basel : MDPI, 2021) Wang, Ning; Zeisberger, Matthias; Hübner, Uwe; Schmidt, Markus A.
    The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.
  • Item
    Generation of Multiple Vector Optical Bottle Beams
    (Basel : MDPI, 2021) Khonina, Svetlana N.; Porfirev, Alexey P.; Volotovskiy, Sergey G.; Ustinov, Andrey V.; Fomchenkov, Sergey A.; Pavelyev, Vladimir S.; Schröter, Siegmund; Duparré, Michael
    We propose binary diffractive optical elements, combining several axicons of different types (axis-symmetrical and spiral), for the generation of a 3D intensity distribution in the form of multiple vector optical ‘bottle’ beams, which can be tailored by a change in the polarization state of the illumination radiation. The spatial dynamics of the obtained intensity distribution with different polarization states (circular and cylindrical of various orders) were investigated in paraxial mode numerically and experimentally. The designed binary axicons were manufactured using the e-beam lithography technique. The proposed combinations of optical elements can be used for the generation of vector optical traps in the field of laser trapping and manipulation, as well as for performing the spatial transformation of the polarization state of laser radiation, which is crucial in the field of laser-matter interaction for the generation of special morphologies of laser-induced periodic surface structures.
  • Item
    Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal
    (Basel : MDPI, 2021) Lamprou, Theocharis; Lopez-Martens, Rodrigo; Haessler, Stefan; Liontos, Ioannis; Kahaly, Subhendu; Rivera-Dean, Javier; Stammer, Philipp; Pisanty, Emilio; Ciappina, Marcelo F.; Lewenstein, Maciej; Tzallas, Paraskevas
    Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
  • Item
    Effects of Plasma-Chemical Composition on AISI 316L Surface Modification by Active Screen Nitrocarburizing Using Gaseous and Solid Carbon Precursors
    (Basel : MDPI, 2021) Jafarpour, Saeed M.; Pipa, Andrei V.; Puth, Alexander; Dalke, Anke; Röpcke, Jürgen; van Helden, Jean-Pierre H.; Biermann, Horst
    Low-temperature plasma nitrocarburizing treatments are applied to improve the surface properties of austenitic stainless steels by forming an expanded austenite layer without impairing the excellent corrosion resistance of the steel. Here, low-temperature active screen plasma nitrocarburizing (ASPNC) was investigated in an industrial-scale cold-wall reactor to compare the effects of two active screen materials: (i) a steel active screen with the addition of methane as a gaseous carbon-containing precursor and (ii) an active screen made of carbon-fibre-reinforced carbon (CFC) as a solid carbon precursor. By using both active screen materials, ASPNC treatments at variable plasma conditions were conducted using AISI 316L. Moreover, insight into the plasma-chemical composition of the H2-N2 plasma for both active screen materials was gained by laser absorption spectroscopy (LAS) combined with optical emission spectroscopy (OES). It was found that, in the case of a CFC active screen in a biased condition, the thickness of the nitrogen-expanded austenite layer increased, while the thickness of the carbon-expanded austenite layer decreased compared to the non-biased condition, in which the nitrogen- and carbon-expanded austenite layers had comparable thicknesses. Furthermore, the crucial role of biasing the workload to produce a thick and homogeneous expanded austenite layer by using a steel active screen was validated.
  • Item
    Revealing the Role of Cross Slip for Serrated Plastic Deformation in Concentrated Solid Solutions at Cryogenic Temperatures
    (Basel : MDPI, 2022) Tirunilai, Aditya Srinivasan; Weiss, Klaus-Peter; Freudenberger, Jens; Heilmaier, Martin; Kauffmann, Alexander
    Serrated plastic deformation is an intense phenomenon in CoCrFeMnNi at and below 35 K with stress amplitudes in excess of 100 MPa. While previous publications have linked serrated deformation to dislocation pile ups at Lomer–Cottrell (LC) locks, there exist two alternate models on how the transition from continuous to serrated deformation occurs. One model correlates the transition to an exponential LC lock density–temperature variation. The second model attributes the transition to a decrease in cross-slip propensity based on temperature and dislocation density. In order to evaluate the validity of the models, a unique tensile deformation procedure with multiple temperature changes was carried out, analyzing stress amplitudes subsequent to temperature changes. The analysis provides evidence that the apparent density of LC locks does not massively change with temperature. Instead, the serrated plastic deformation is likely related to cross-slip propensity.
  • Item
    Peculiarities of the Acoustic Wave Propagation in Diamond-Based Multilayer Piezoelectric Structures as “Me1/(Al,Sc)N/Me2/(100) Diamond/Me3” and “Me1/AlN/Me2/(100) Diamond/Me3” under Metal Thin-Film Deposition
    (Basel : MDPI, 2022) Kvashnin, Gennady; Sorokin, Boris; Asafiev, Nikita; Prokhorov, Viacheslav; Sotnikov, Andrei
    New theoretical and experimental results of microwave acoustic wave propagation in diamond-based multilayer piezoelectric structures (MPS) as “Me1/(Al,Sc)N/Me2/(100) diamond/Me3” and “Me1/AlN/Me2/(100) diamond/Me3” under three metal film depositions, including the change in the quality factor Q as a result of Me3 impact, were obtained. Further development of our earlier studies was motivated by the necessity of creating a sensor model based on the above fifth layered MPS and its in-depth study using the finite element method (FEM). Experimental results on the change in operational checkpoint frequencies and quality factors under the effect of film deposition are in satisfactory accordance with FEM data. The relatively small decrease in the quality factor of diamond-based high overtone bulk acoustic resonator (HBAR) under the metal layer effect observed in a wide microwave band could be qualified as an important result. Changes in operational resonant frequencies vs. film thickness were found to have sufficient distinctions. This fact can be quite explained in terms of the difference between acoustic impedances of diamond and deposited metal films.