Search Results

Now showing 1 - 10 of 53
Loading...
Thumbnail Image
Item

Tailored Disorder in Photonics: Learning from Nature

2021, Rothammer, Maximilian, Zollfrank, Cordt, Busch, Kurt, Freymann, Georg von

Disorder and photonics have long been seen as natural adversaries and designers of optical systems have often driven systems to perfection by minimizing deviations from the ideal design. Especially in the field of photonic crystals and metamaterials but also for optical circuits, disorder has been avoided as a nuisance for many years. However, starting from the very robust structural colors found in nature, scientists learn to analyze and tailor disorder to achieve functionalities beyond what is possible with perfectly ordered or ideal systems alone. This review article covers theoretical and materials aspects of tailored disorder as well as experimental results. Furthermore selected examples are highlighted in greater detail, for which the intentional use of disorder adds additional functionality or provides novel functionality impossible without disorder. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Robust transverse structures in rescattered photoelectron wavepackets and their consequences

2020, Bredtmann, T., Patchkovskii, S.

Initial-state symmetry has been under-appreciated in strong-field spectroscopies, where laser fields dominate the dynamics. We demonstrate numerically that the transverse photoelectron phase structure, arising from the initial-state symmetry, is robust in strong-field rescattering, and has pronounced effects on strong-field photoelectron spectra. Interpretation of rescattering experiments need to take these symmetry effects into account. In turn, robust transverse photoelectron phase structures may enable attosecond sub-Ångström super-resolution imaging with structured electron beams.

Loading...
Thumbnail Image
Item

Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas

2021, Scott, G.G., Indorf, G.F.H., Ennen, M.A., Forestier-Colleoni, P., Hawkes, S.J., Scaife, L., Sedov, M., Symes, D.R., Thornton, C., Beg, F., Ma, T., McKenna, P., Andreev, A.A., Teubner, U., Neely, D.

An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L < 0.1λ), where the interaction is highly collisional and target material dependent, followed by a period of material independent plasma expansion for longer scale lengths (L > 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme.

Loading...
Thumbnail Image
Item

High-order parametric generation of coherent XUV radiation

2021, Hort, O., Dubrouil, A., Khokhlova, M.A., Descamps, D., Petit, S., Burgy, F., Mével, E., Constant, E., Strelkov, V.V.

Extreme ultraviolet (XUV) radiation finds numerous applications in spectroscopy. When the XUV light is generated via high-order harmonic generation (HHG), it may be produced in the form of attosecond pulses, allowing access to unprecedented ultrafast phenomena. However, the HHG efficiency remains limited. Here we present an observation of a new regime of coherent XUV emission which has a potential to provide higher XUV intensity, vital for applications. We explain the process by high-order parametric generation, involving the combined emission of THz and XUV photons, where the phase matching is very robust against ionization. This introduces a way to use higher-energy driving pulses, thus generating more XUV photons.

Loading...
Thumbnail Image
Item

High-energy few-cycle pulses: post-compression techniques

2021, Nagy, Tamas, Simon, Peter, Veisz, Laszlo

Contemporary ultrafast science requires reliable sources of high-energy few-cycle light pulses. Currently two methods are capable of generating such pulses: post compression of short laser pulses and optical parametric chirped-pulse amplification (OPCPA). Here we give a comprehensive overview on the post-compression technology based on optical Kerr-effect or ionization, with particular emphasis on energy and power scaling. Relevant types of post compression techniques are discussed including free propagation in bulk materials, multiple-plate continuum generation, multi-pass cells, filaments, photonic-crystal fibers, hollow-core fibers and self-compression techniques. We provide a short theoretical overview of the physics as well as an in-depth description of existing experimental realizations of post compression, especially those that can provide few-cycle pulse duration with mJ-scale pulse energy. The achieved experimental performances of these methods are compared in terms of important figures of merit such as pulse energy, pulse duration, peak power and average power. We give some perspectives at the end to emphasize the expected future trends of this technology. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

High power, high repetition rate laser-based sources for attosecond science

2022, Furch, F.J., Witting, T., Osolodkov, M., Schell, F., Schulz, C.P., Vrakking, M.J.

Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates.

Loading...
Thumbnail Image
Item

Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal

2021, Lamprou, Theocharis, Lopez-Martens, Rodrigo, Haessler, Stefan, Liontos, Ioannis, Kahaly, Subhendu, Rivera-Dean, Javier, Stammer, Philipp, Pisanty, Emilio, Ciappina, Marcelo F., Lewenstein, Maciej, Tzallas, Paraskevas

Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.

Loading...
Thumbnail Image
Item

Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances

2022, Heßler, Andreas, Wahl, Sophia, Kristensen, Philip Trøst, Wuttig, Matthias, Busch, Kurt, Taubner, Thomas

Phase-change materials (PCMs) allow for non-volatile resonance tuning of nanophotonic components. Upon switching, they offer a large dielectric contrast between their amorphous and crystalline phases. The recently introduced “plasmonic PCM” In3SbTe2 (IST) additionally features in its crystalline phase a sign change of its permittivity over a broad infrared spectral range. While optical resonance switching in unpatterned IST thin films has been investigated before, nanostructured IST antennas have not been studied, yet. Here, we present numerical and experimental investigations of nanostructured IST rod and disk antennas. By crystallizing the IST with microsecond laser pulses, we switched individual antennas from narrow dielectric to broad plasmonic resonances. For the rod antennas, we demonstrated a resonance shift of up to 1.2 µm (twice the resonance width), allowing on/off switching of plasmonic resonances with a contrast ratio of 2.7. With the disk antennas, we realized an increase of the resonance width by more than 800% from 0.24 µm to 1.98 µm while keeping the resonance wavelength constant. Further, we demonstrated intermediate switching states by tuning the crystallization depth within the resonators. Our work empowers future design concepts for nanophotonic applications like active spectral filters, tunable absorbers, and switchable flat optics.

Loading...
Thumbnail Image
Item

Origin of Terahertz Soft-Mode Nonlinearities in Ferroelectric Perovskites

2021, Pal, Shovon, Strkalj, Nives, Yang, Chia-Jung, Weber, Mads C., Trassin, Morgan, Woerner, Michael, Fiebig, Manfred

Soft modes are intimately linked to structural instabilities and are key for the understanding of phase transitions. The soft modes in ferroelectrics, for example, map directly the polar order parameter of a crystal lattice. Driving these modes into the nonlinear, frequency-changing regime with intense terahertz (THz) light fields is an efficient way to alter the lattice and, with it, the physical properties. However, recent studies show that the THz electric-field amplitudes triggering a nonlinear soft-mode response are surprisingly low, which raises the question on the microscopic picture behind the origin of this nonlinear response. Here, we use linear and two-dimensional terahertz (2D THz) spectroscopy to unravel the origin of the soft-mode nonlinearities in a strain-engineered epitaxial ferroelectric SrTiO3 thin film. We find that the linear dielectric function of this mode is quantitatively incompatible with pure ionic or pure electronic motions. Instead, 2D THz spectroscopy reveals a pronounced coupling of electronic and ionic-displacement dipoles. Hence, the soft mode is a hybrid mode of lattice (ionic) motions and electronic interband transitions. We confirm this conclusion with model calculations based on a simplified pseudopotential concept of the electronic band structure. It reveals that the entire THz nonlinearity is caused by the off-resonant nonlinear response of the electronic interband transitions of the lattice-electronic hybrid mode. With this work, we provide fundamental insights into the microscopic processes that govern the softness that any material assumes near a ferroic phase transition. This knowledge will allow us to gain an efficient all-optical control over the associated large nonlinear effects.

Loading...
Thumbnail Image
Item

8 fs laser pulses from a compact gas-filled multi-pass cell

2021, Rueda, P., Videla, F., Witting, T., Torchia, G.A., Furch, F.J.

Compression of 42 fs, 0.29 mJ pulses from a Ti:Sapphire amplifier down to 8 fs (approximately 3 optical cycles) is demonstrated by means of spectral broadening in a compact multi-pass cell filled with argon. The efficiency of the nonlinear pulse compression is limited to 45 % mostly by losses in the mirrors of the cell. The experimental results are supported by 3-dimensional numerical simulations of the nonlinear pulse propagation in the cell that allow us to study spatio-spectral properties of the pulses after spectral broadening.