Search Results

Now showing 1 - 3 of 3
  • Item
    Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe
    (Berlin ; Heidelberg : Springer, 2021) Sun, Jia; Hermann, Markus; Yuan, Ye; Birmili, Wolfram; Collaud Coen, Martine; Weinhold, Kay; Madueño, Leizel; Poulain, Laurent; Tuch, Thomas; Ries, Ludwig; Sohmer, Ralf; Couret, Cedric; Frank, Gabriele; Brem, Benjamin Tobias; Gysel-Beer, Martin; Ma, Nan; Wiedensohler, Alfred
    Background: The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results: The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions: The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends. © 2021, The Author(s).
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) Tõnisson, Liina; Voigtländer, Jens; Weger, Michael; Assmann, Denise; Käthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines
    (Basel : MDPI, 2020) Tõnisson, Liina; Kunz, Yvonne; Kecorius, Simonas; Madueño, Leizel; Tamayo, Everlyn Gayle; Casanova, Dang Marviluz; Zhao, Qi; Schikowski, Tamara; Hornidge, Anna-Katharina; Wiedensohler, Alfred; Macke, Andreas
    Air pollution, which kills an estimated 7 million people every year, is one of the greatest environmental health risks of our times. Finding solutions to this threat poses challenges to practitioners and policymakers alike. Increasing awareness on the benefits of transdisciplinary research in solution-oriented sustainable development projects has led to the establishment of the research project “A Transdisciplinary Approach to Mitigate Emissions of Black Carbon” (TAME-BC). This paper introduces the TAME-BC research setup that took place with Metro Manila, Philippines, case study. The approach integrates BC measurements with technological, socio-political, and health aspects to improve the scientific state of the art, policymaking, transport sector planning, and clinical studies related to air pollution health effects. The first pillar in the setup presents an (1) air quality assessment through aerosol measurements and instrumentation, complemented by a (2) description and assessment of the current policies, technologies, and practices of the transport sector that is responsible for pollution levels in the Philippines, as well as a (3) BC exposure and associated health impacts assessment. The fourth pillar is intercrossing, fostering (4) knowledge co-creation through stakeholder involvement across scales. We argue that this transdisciplinary approach is useful for research endeavors aiming for emission mitigation in rapidly urbanizing regions beyond Metro Manila.