Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films

2022, Makushko, Pavlo, Kosub, Tobias, Pylypovskyi, Oleksandr V., Hedrich, Natascha, Li, Jiang, Pashkin, Alexej, Avdoshenko, Stanislav, Hübner, René, Ganss, Fabian, Wolf, Daniel, Lubk, Axel, Liedke, Maciej Oskar, Butterling, Maik, Wagner, Andreas, Wagner, Kai, Shields, Brendan J., Lehmann, Paul, Veremchuk, Igor, Fassbender, Jürgen, Maletinsky, Patrick, Makarov, Denys

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 μB nm−2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

Loading...
Thumbnail Image
Item

Giant stress response of terahertz magnons in a spin-orbit Mott insulator

2022, Kim, Hun-Ho, Ueda, Kentaro, Nakata, Suguru, Wochner, Peter, Mackenzie, Andrew, Hicks, Clifford, Khaliullin, Giniyat, Liu, Huimei, Keimer, Bernhard, Minola, Matteo

Magnonic devices operating at terahertz frequencies offer intriguing prospects for high-speed electronics with minimal energy dissipation However, guiding and manipulating terahertz magnons via external parameters present formidable challenges. Here we report the results of magnetic Raman scattering experiments on the antiferromagnetic spin-orbit Mott insulator Sr2IrO4 under uniaxial stress. We find that the energies of zone-center magnons are extremely stress sensitive: lattice strain of 0.1% increases the magnon energy by 40%. The magnon response is symmetric with respect to the sign of the applied stress (tensile or compressive), but depends strongly on its direction in the IrO2 planes. A theory based on coupling of the spin-orbit-entangled iridium magnetic moments to lattice distortions provides a quantitative explanation of the Raman data and a comprehensive framework for the description of magnon-lattice interactions in magnets with strong spin-orbit coupling. The possibility to efficiently manipulate the propagation of terahertz magnons via external stress opens up multifold design options for reconfigurable magnonic devices.

Loading...
Thumbnail Image
Item

Unconventional Hall response in the quantum limit of HfTe5

2020, Galeski, S., Zhao, X., Wawrzyńczak, R., Meng, T., Förster, T., Lozano, P.M., Honnali, S., Lamba, N., Ehmcke, T., Markou, A., Li., Q., Gu, G., Zhu, W., Wosnitza, J., Felser, C., Chen, G.F., Gooth, J.

Interacting electrons confined to their lowest Landau level in a high magnetic field can form a variety of correlated states, some of which manifest themselves in a Hall effect. Although such states have been predicted to occur in three-dimensional semimetals, a corresponding Hall response has not yet been experimentally observed. Here, we report the observation of an unconventional Hall response in the quantum limit of the bulk semimetal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields. The additional plateau-like feature in the Hall conductivity of the lowest Landau level is accompanied by a Shubnikov-de Haas minimum in the longitudinal electrical resistivity and its magnitude relates as 3/5 to the height of the last plateau of the three-dimensional quantum Hall effect. Our findings are consistent with strong electron-electron interactions, stabilizing an unconventional variant of the Hall effect in a three-dimensional material in the quantum limit.

Loading...
Thumbnail Image
Item

Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics

2022, Huber, R., Kern, F., Karnaushenko, D.D., Eisner, E., Lepucki, P., Thampi, A., Mirhajivarzaneh, A., Becker, C., Kang, T., Baunack, S., Büchner, B., Karnaushenko, D., Schmidt, O.G., Lubk, A.

Tunable electromagnets and corresponding devices, such as magnetic lenses or stigmators, are the backbone of high-energy charged particle optical instruments, such as electron microscopes, because they provide higher optical power, stability, and lower aberrations compared to their electric counterparts. However, electromagnets are typically macroscopic (super-)conducting coils, which cannot generate swiftly changing magnetic fields, require active cooling, and are structurally bulky, making them unsuitable for fast beam manipulation, multibeam instruments, and miniaturized applications. Here, we present an on-chip microsized magnetic charged particle optics realized via a self-assembling micro-origami process. These micro-electromagnets can generate alternating magnetic fields of about ±100 mT up to a hundred MHz, supplying sufficiently large optical power for a large number of charged particle optics applications. That particular includes fast spatiotemporal electron beam modulation such as electron beam deflection, focusing, and wave front shaping as required for stroboscopic imaging.

Loading...
Thumbnail Image
Item

Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction

2020, Li, Tianming, Bandari, Vineeth Kumar, Hantusch, Martin, Xin, Jianhui, Kuhrt, Robert, Ravishankar, Rachappa, Xu, Longqian, Zhang, Jidong, Knupfer, Martin, Zhu, Feng, Yan, Donghang, Schmidt, Oliver G.

Considerable efforts have been made to realize nanoscale diodes based on single molecules or molecular ensembles for implementing the concept of molecular electronics. However, so far, functional molecular diodes have only been demonstrated in the very low alternating current frequency regime, which is partially due to their extremely low conductance and the poor degree of device integration. Here, we report about fully integrated rectifiers with microtubular soft-contacts, which are based on a molecularly thin organic heterojunction and are able to convert alternating current with a frequency of up to 10 MHz. The unidirectional current behavior of our devices originates mainly from the intrinsically different surfaces of the bottom planar and top microtubular Au electrodes while the excellent high frequency response benefits from the charge accumulation in the phthalocyanine molecular heterojunction, which not only improves the charge injection but also increases the carrier density.

Loading...
Thumbnail Image
Item

Observation of fractional spin textures in a Heusler material

2022, Jena, Jagannath, Göbel, Börge, Hirosawa, Tomoki, Díaz, Sebastián A., Wolf, Daniel, Hinokihara, Taichi, Kumar, Vivek, Mertig, Ingrid, Felser, Claudia, Lubk, Axel, Loss, Daniel, Parkin, Stuart S.P.

Recently a zoology of non-collinear chiral spin textures has been discovered, most of which, such as skyrmions and antiskyrmions, have integer topological charges. Here we report the experimental real-space observation of the formation and stability of fractional antiskyrmions and fractional elliptical skyrmions in a Heusler material. These fractional objects appear, over a wide range of temperature and magnetic field, at the edges of a sample, whose interior is occupied by an array of nano-objects with integer topological charges, in agreement with our simulations. We explore the evolution of these objects in the presence of magnetic fields and show their interconversion to objects with integer topological charges. This means the topological charge can be varied continuously. These fractional spin textures are not just another type of skyrmion, but are essentially a new state of matter that emerges and lives only at the boundary of a magnetic system. The coexistence of both integer and fractionally charged spin textures in the same material makes the Heusler family of compounds unique for the manipulation of the real-space topology of spin textures and thus an exciting platform for spintronic and magnonic applications.

Loading...
Thumbnail Image
Item

A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays

2022, Becker, Christian, Bao, Bin, Karnaushenko, Dmitriy D., Bandari, Vineeth Kumar, Rivkin, Boris, Li, Zhe, Faghih, Maryam, Karnaushenko, Daniil, Schmidt, Oliver G.

Magnetic sensors are widely used in our daily life for assessing the position and orientation of objects. Recently, the magnetic sensing modality has been introduced to electronic skins (e-skins), enabling remote perception of moving objects. However, the integration density of magnetic sensors is limited and the vector properties of the magnetic field cannot be fully explored since the sensors can only perceive field components in one or two dimensions. Here, we report an approach to fabricate high-density integrated active matrix magnetic sensor with three-dimensional (3D) magnetic vector field sensing capability. The 3D magnetic sensor is composed of an array of self-assembled micro-origami cubic architectures with biased anisotropic magnetoresistance (AMR) sensors manufactured in a wafer-scale process. Integrating the 3D magnetic sensors into an e-skin with embedded magnetic hairs enables real-time multidirectional tactile perception. We demonstrate a versatile approach for the fabrication of active matrix integrated 3D sensor arrays using micro-origami and pave the way for new electronic devices relying on the autonomous rearrangement of functional elements in space.

Loading...
Thumbnail Image
Item

Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2

2020, Stahl, Quirin, Kusch, Maximilian, Heinsch, Florian, Garbarino, Gaston, Kretzschmar, Norman, Hanff, Kerstin, Rossnagel, Kai, Geck, Jochen, Ritschel, Tobias

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

Loading...
Thumbnail Image
Item

On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour

2022, Li, Tianming, Hantusch, Martin, Qu, Jiang, Bandari, Vineeth Kumar, Knupfer, Martin, Zhu, Feng, Schmidt, Oliver G.

Molecular devices constructed by sub-10 nm thick molecular layers are promising candidates for a new generation of integratable nanoelectronic applications. Here, we report integrated molecular devices based on ultrathin copper phthalocyanine/fullerene hybrid layers with microtubular soft-contacts, which exhibit process-programmable functionality switching between photomultiplication and memristive behaviour. The local electric field at the interface between the polymer bottom electrode and the enclosed molecular channels modulates the ionic-electronic charge interaction and hence determines the transition of the device function. When ions are not driven into the molecular channels at a low interface electric field, photogenerated holes are trapped as electronic space charges, resulting in photomultiplication with a high external quantum efficiency. Once mobile ions are polarized and accumulated as ionic space charges in the molecular channels at a high interface electric field, the molecular devices show ferroelectric-like memristive switching with remarkable resistive ON/OFF and rectification ratios.