Search Results

Now showing 1 - 10 of 22
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Low-Temperature Magnetothermodynamics Performance of Tb1-xErxNi2 Laves-Phases Compounds for Designing Composite Refrigerants
    (Basel : MDPI, 2022) Ćwik, Jacek; Koshkid’ko, Yurii; Nenkov, Konstantin; Tereshina-Chitrova, Evgenia; Weise, Bruno; Kowalska, Karolina
    In this paper, the results of heat capacity measurements performed on the polycrystalline Tb1-xErxNi2 intermetallic compounds with x = 0.25, 0.5 and 0.75 are presented. The Debye temperatures and lattice contributions as well as the magnetic part of the heat capacity were determined and analyzed. The heat capacity measurements reveal that the substitution of Tb atoms for Er atoms leads to a linear reduction of the Curie temperatures in the investigated compounds. The ordering temperatures decrease from 28.3 K for Tb0.25Er0.75Ni2 to 12.9 K for Tb0.75Er0.25Ni2. Heat capacity measurements enabled us to calculate with good approximation the isothermal magnetic entropy ΔSmag and adiabatic temperature changes ΔTad for Tb1-xErxNi2, for the magnetic field value equal to 1 T and 2 T. The optimal molar ratios of individual Tb0.75Er0.25Ni2, Tb0.5Er0.5Ni2 and Tb0.25Er0.75Ni2 components in the final composite were theoretically determined. According to the obtained results, the investigated composites make promising candidates that can find their application as an active body in a magnetic refrigerator performing an Ericsson cycle at low temperatures. Moreover, for the Tb0.5Er0.5Ni2 compound, direct measurements of adiabatic temperature change in the vicinity of the Curie temperature in the magnetic field up to 14 T were performed. The obtained high-field results are compared to the data for the parent TbNi2 and ErNi2 compounds, and their magnetocaloric properties near the Curie temperature are analyzed in the framework of the Landau theory for the second-order phase transitions.
  • Item
    Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
    (Basel : MDPI, 2022) Ursaki, Veaceslav V.; Lehmann, Sebastian; Zalamai, Victor V.; Morari, Vadim; Nielsch, Kornelius; Tiginyanu, Ion M.; Monaico, Eduard V.
    GaAs nanowire arrays have been prepared by anodization of GaAs substrates. The nanowires produced on (111)B GaAs substrates were found to be oriented predominantly perpendicular to the substrate surface. The prepared nanowire arrays have been coated with thin ZnO or TiO2 layers by means of thermal atomic layer deposition (ALD), thus coaxial core–shell hybrid structures are being fabricated. The hybrid structures have been characterized by scanning electron microscopy (SEM) for the morphology investigations, by Energy Dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis for the composition and crystal structure assessment, and by photoluminescence (PL) spectroscopy for obtaining an insight on emission polarization related to different recombination channels in the prepared core–shell structures.
  • Item
    Aero-TiO2 Prepared on the Basis of Networks of ZnO Tetrapods
    (Basel : MDPI, 2022) Ciobanu, Vladimir; Ursaki, Veaceslav V.; Lehmann, Sebastian; Braniste, Tudor; Raevschi, Simion; Zalamai, Victor V.; Monaico, Eduard V.; Colpo, Pascal; Nielsch, Kornelius; Tiginyanu, Ion M.
    In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures and etching of the sacrificial template. Two procedures are applied for etching, one of which is wet etching in a citric acid aqua solution, while the other one is etching in a hydride vapor phase epitaxy (HVPE) system with HCl and hydrogen chemicals. The morphology, composition, and crystal structure of the produced aeromaterials are investigated depending on the temperature of annealing and the sequence of the technological steps. The performed photoluminescence analysis suggests that the developed aeromaterials are potential candidates for photocatalytic applications.
  • Item
    TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals
    (Basel : MDPI, 2022) Voloshyna, Olesia; Romaka, Vitaliy V.; Karmakar, Koushik ;Seiro, Silvia; Maljuk, Andrey; Büchner, Bernd
    The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 ÷ 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≥ 0.3, no superconductivity was detected down to 4 K.
  • Item
    Phase Diagram of a Strained Ferroelectric Nanowire
    (Basel : MDPI, 2022) Pavlenko, Maksim A.; Di Rino, Franco; Boron, Leo; Kondovych, Svitlana; Sené, Anaïs; Tikhonov, Yuri A.; Razumnaya, Anna G.; Vinokur, Valerii M.; Sepliarsky, Marcelo; Lukyanchuk, Igor A.
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologies
  • Item
    Effect of Silver Doping on the Superconducting and Structural Properties of YBCO Films Grown by PLD on Different Templates
    (Basel : MDPI, 2022) Shipulin, Ilya A.; Thomas, Aleena Anna; Holleis, Sigrid; Eisterer, Michael; Nielsch, Kornelius; Hühne, Ruben
    We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.
  • Item
    Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
    (Basel : MDPI, 2022) Kühn, Uta; Sander, Jan; Gabrysiak, Katharina Nicole; Giebeler, Lars; Kosiba, Konrad; Pilz, Stefan; Neufeld, Kai; Boehm, Anne Veronika; Hufenbach, Julia Kristin
    A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
  • Item
    Sodium-Vanadium Bronze Na9V14O35: An Electrode Material for Na-Ion Batteries
    (Basel : MDPI, 2021) Kirsanova, Maria A.; Akmaev, Alexey S.; Gorbunov, Mikhail V.; Mikhailova, Daria; Abakumov, Artem M.
    Na9V14O35 (η-NaxV2O5) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, Na9V14O35 adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO5 tetragonal pyramids and VO4 tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate Na9V104.1+O19(V5+O4)4. Behavior of Na9V14O35 as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula, resulting in electrochemical capacity of ~60 mAh g−1. Upon discharge below 1 V, Na9V14O35 uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered Na9V14O35 structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g−1 delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.
  • Item
    Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
    (Basel : MDPI, 2021) Cirillo, Giuseppe; Curcio, Manuela; Madeo, Lorenzo Francesco; Iemma, Francesca; De Filpo, Giovanni; Hampel, Silke; Nicoletta, Fiore Pasquale
    The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.