Search Results

Now showing 1 - 7 of 7
  • Item
    Electron beam induced dehydrogenation of MgH2 studied by VEELS
    (Cham : Springer International Publishing AG, 2016) Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd
    Nanosized or nanoconfined hydrides are promising materials for solid-state hydrogen storage. Most of these hydrides, however, degrade fast during the structural characterization utilizing transmission electron microscopy (TEM) upon the irradiation with the imaging electron beam due to radiolysis. We use ball-milled MgH2 as a reference material for in-situ TEM experiments under low-dose conditions to study and quantitatively understand the electron beam-induced dehydrogenation. For this, valence electron energy loss spectroscopy (VEELS) measurements are conducted in a monochromated FEI Titan3 80–300 microscope. From observing the plasmonic absorptions it is found that MgH2 successively converts into Mg upon electron irradiation. The temporal evolution of the spectra is analyzed quantitatively to determine the thickness-dependent, characteristic electron doses for electron energies of both 80 and 300 keV. The measured electron doses can be quantitatively explained by the inelastic scattering of the incident high-energy electrons by the MgH2 plasmon. The obtained insights are also relevant for the TEM characterization of other hydrides.
  • Item
    Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate
    (London [u.a.] : RSC, 2015) Robaschik, Peter; Fronk, Michael; Toader, Marius; Klyatskaya, Svetlana; Ganss, Fabian; Siles, Pablo F.; Schmidt, Oliver G.; Albrecht, Manfred; Hietschold, Michael; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    In this work, we investigated the magneto-optical response of thin films of TbPc2 on substrates which are relevant for (spin) organic field effect transistors (SiO2) or vertical spin valves (Co) in order to explore the possibility of implementing TbPc2 in magneto-electronic devices, the functionality of which includes optical reading. The optical and magneto-optical properties of TbPc2 thin films prepared by organic molecular beam deposition (OMBD) on silicon substrates covered with native oxide were investigated by variable angle spectroscopic ellipsometry (VASE) and magneto-optical Kerr effect (MOKE) spectroscopy at room temperature. The magneto-optical activity of the TbPc2 films can be significantly enhanced by one to two orders of magnitude upon changing the molecular orientation (from nearly standing molecules on SiO2/Si substrates to nearly lying molecules on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) templated SiO2/Si substrates) or by using metallic ferromagnetic substrates (Co).
  • Item
    Phase equilibria in the Gd–Cr–Ge system at 1070 K
    (Ivano-Frankivsʹk : Fizyko-chimičnyj instytut DVNZ "Prykarpatsʹkyj nacionalʹnyj universytet imeni Vasylja Stefanyka", 2021) Konyk, M.; Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Pashkevych, V.
    The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd117Cr52Ge112 (Tb117Fe52Ge112 structure type,  space group Fm-3m, Pearson symbol cF1124, a = 2.8971(6) nm), GdCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, Pearson symbol hP16, a = 0.51797(2), c = 0.82901(4) nm) and GdCr1-хGe2 (CeNiSi2 structure type, space group Cmcm, Pearson symbol oS16, a = 0.41569(1)-0.41593(8), b = 1.60895(6)-1.60738(3), c = 0.40318(1)-0.40305(8) nm). For the GdCr1-xGe2 compound the homogeneity range was determined (x=0.73 – 0,69).
  • Item
    A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series
    (Berlin ; Heidelberg : Springer, 2017-5-12) Redhammer, Günther J.; Senyshyn, Anatoliy; Lebernegg, Stefan; Tippelt, Gerold; Dachs, Edgar; Roth, Georg
    Solid solution compounds along the Li1–x Na x FeGe2O6 clinopyroxene series have been prepared by solid state ceramic sintering and investigated by bulk magnetic and calorimetric methods; the Na-rich samples with x(Na) > 0.7 were also investigated by low-temperature neutron diffraction experiments in a temperature range of 4–20 K. For samples with x(Na) > 0.76 the crystal structure adopts the C2/c symmetry at all measuring temperatures, while the samples display P21/c symmetry for smaller Na contents. Magnetic ordering is observed for all samples below 20 K with a slight decrease of T N with increasing Na content. The magnetic spin structures change distinctly as a function of chemical composition: up to x(Na) = 0.72 the magnetic structure can be described by a commensurate arrangement of magnetic spins with propagation vector k = (½, 0 0), an antiferromagnetic (AFM) coupling within the Fe3+O6 octahedra zig-zag chains and an alternating AFM and ferromagnetic (FM) interaction between the chains, depending on the nature of the tetrahedral GeO4 chains. The magnetic structure can be described in magnetic space group P a21/c. Close to the structural phase transition for sample with x(Na) = 0.75, magnetic ordering is observed below 15 K; however, it becomes incommensurately modulated with k = (0.344, 0, 0.063). At 4 K, the magnetic spin structure best can be described by a cycloidal arrangement within the M1 chains, the spins are within the a–c plane. Around 12 K the cycloidal structure transforms to a spin density wave (SDW) structure. For the C2/c structures, a coexistence of a simple collinear and an incommensurately modulated structure is observed down to lowest temperatures. For 0.78 ≤ x(Na) ≤ 0.82, a collinear magnetic structure with k = (0 1 0), space group P C21/c and an AFM spin structure within the M1 chains and an FM one between the spins is dominating, while the incommensurately modulated structure becomes dominating the collinear one in the samples with x(Na) = 0.88. Here the magnetic propagation vector is k = (0.28, 1, 0.07) and the spin structure corresponds again to a cycloidal structure within the M1 chains. As for the other samples, a transition from the cycloidal to a SDW structure is observed. Based on the neutron diffraction data, the appearance of two peaks in the heat capacity of Na-rich samples can now be interpreted as a transition from a cycloidal magnetic structure to a spin density wave structure of the magnetically ordered phase for the Na-rich part of the solid solution series.
  • Item
    DC conductivity and Seebeck coefficient of nonstoichiometric MgCuZn ferrites
    (Warsaw : De Gruyter Open, 2017-2-8) Madhuri, W.; Kiran, S. Roopas; Reddy, M. Penchal; Reddy, N. Ramamanohar; Kumar, K.V. Siva
    Nonstoichiometric series of Mg0.5-xCuxZn0.5Fe1.9O4-δ where x = 0.0, 0.1, 0.15, 0.2 and 0.25 has been synthesized by conventional solid state reaction route. The single phase spinel structure of the double sintered ferrites was confirmed by X-ray diffraction patterns (XRD). The ferrite series was studied in terms of DC electrical conductivity and thermoelectric power in the temperature ranging from room temperature to 300 °C and 400 °C, respectively. It was observed that DC electrical conductivity and Seebeck coefficient α decreased with the increase in x. DC electrical conductivity was found to decrease by about 4 orders. All the compositions showed a negative Seebeck coefficient exhibiting n-type semiconducting nature. From the above experimental results, activation energy and mobility of all the samples were estimated. Small polaron hopping conduction mechanism was suggested for the series of ferrites. Owing to their low conductivity the nonstoichiometric MgCuZn ferrites are the best materials for transformer core and high definition television deflection yokes. © 2017 Wroclaw University of Science and Technology.
  • Item
    Supervised discriminant analysis for droplet micro-magnetofluidics
    (Heidelberg : Springer, 2015) Lin, Gungun; Fomin, Vladimir M.; Makarov, Denys; Schmidt, Oliver G.
    We apply the technique of supervised discriminant analysis (SDA) for in-flow detection in droplet-based magnetofluidics. Based on the SDA, we successfully discriminate bivariant droplets of different volumes containing different encapsulated magnetic content produced by a GMR-based lab-on-chip platform. We demonstrate that the accuracy of discrimination is superior when the correlation of variables for data training is included to the case when the spatial distribution of variables is considered. Droplets produced with differences in ferrofluid concentration of 2.5 mg/ml and volume of 200 pl have been identified with high accuracy (98 %), indicating the significance of SDA for e.g. the discrimination in magnetic immuno-agglutination assays. Furthermore, the results open the way for the development of a unique magnetofluidic platform for future applications in multiplexed droplet-based barcoding assays and screening.
  • Item
    Charge transfer characteristics of F6TCNNQ–gold interface
    (Chichester [u.a.] : Wiley, 2020) Kuhrt, Robert; Hantusch, Martin; Knupfer, Martin; Büchner, Bernd
    The metal–organic interface between polycrystalline gold and hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) was investigated by photoelectron spectroscopy with the focus on the charge transfer characteristics from the metal to the molecule. The valence levels, as well as the core levels of the heterojunction, indicate a full electron transfer and a change in the chemical environment. The changes are observed in the first F6TCNNQ layers, whereas for further film growth, only neutral F6TCNNQ molecules could be detected. New occupied states below the Fermi level were observed in the valence levels, indicating a lowest unoccupied molecular orbital (LUMO) occupation due to the charge transfer. A fitting of the spectra reveals the presence of a neutral and a charged F6TCNNQ molecules, but no further species were present.