Search Results

Now showing 1 - 3 of 3
  • Item
    A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust
    (Bristol : IOP Publ., 2016) Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana
    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M⊙ stars with the Z = 0.008.
  • Item
    The dynamical evolution of planetary nebulae
    (Bristol : IOP Publ., 2016) Schönberner, Detlef
    Based on modern 1D-radiation-hydrodynamics simulations of formation and evolution of planetary nebulae, I discuss in detail the basic dynamical processes responsible for the "grand design" of most planetary nebulae, i.e. their double-shell morphology and their typical expansion properties. Special emphasis is given for a proper definition of a nebula's true expansion rate and its relation to spectroscopically measurable Doppler velocities of the expanding material. It is found that the typical nebular expansion is about twice as fast as hitherto assumed, viz. ≃45 kms-1.
  • Item
    First stellar photons for an integrated optics discrete beam combiner at the William Herschel Telescope
    (Washington, DC : The Optical Society, 2021) Nayak, Abani Shankar; Labadie, Lucas; Sharma, Tarun Kumar; Piacentini, Simone; Corrielli, Giacomo; Osellame, Roberto; Gendron, Éric; Buey, Jean-Tristan M.; Chemla, Fanny; Cohen, Mathieu; Bharmal, Nazim A.; Bardou, Lisa F.; Staykov, Lazar; Osborn, James; Morris, Timothy J.; Pedretti, Ettore; Dinkelaker, Aline N.; Madhav, Kalaga V.; Roth, Martin M.
    We present the first on-sky results of a four-telescope integrated optics discrete beam combiner (DBC) tested at the 4.2mWilliamHerschel Telescope. The device consists of a four-input pupil remapper followed by a DBC and a 23-output reformatter. The whole device was written monolithically in a single alumino-borosilicate substrate using ultrafast laser inscription. The device was operated at astronomical H-band (1.6 μm), and a deformable mirror along with a microlens array was used to inject stellar photons into the device. We report the measured visibility amplitudes and closure phases obtained on Vega and Altair that are retrieved using the calibrated transfer matrix of the device. While the coherence function can be reconstructed, the on-sky results show significant dispersion from the expected values. Based on the analysis of comparable simulations, we find that such dispersion is largely caused by the limited signal-to-noise ratio of our observations. This constitutes a first step toward an improved validation of theDBCas a possible beam combination scheme for long-baseline interferometry. © 2021 Optical Society of America.