Search Results

Now showing 1 - 2 of 2
  • Item
    Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization
    (Washington, DC : ACS Publ., 2015) Stroganov, Vladislav; Al-Hussein, Mahmoud; Sommer, Jens-Uwe; Janke, Andreas; Zakharchenko, Svetlana; Ionov, Leonid
    We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the “crystallization memory effect”. In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.
  • Item
    Structure and Bottom-up Formation Mechanism of Multisheet Silica-Based Nanoparticles Formed in an Epoxy Matrix through an In Situ Process
    (Washington, DC : ACS Publ., 2021) Branda, Francesco; Bifulco, Aurelio; Jehnichen, Dieter; Parida, Dambarudhar; Pauer, Robin; Passaro, Jessica; Gaan, Sabyasachi; Pospiech, Doris; Durante, Massimo
    Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an “in situ” sol–gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol–gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol–gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.