Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

The Hiccup: a dynamical coupling process during the autumn transition in the Northern Hemisphere – similarities and differences to sudden stratospheric warmings

2015, Matthias, V., Shepherd, T.G., Hoffmann, P., Rapp, M.

Sudden stratospheric warmings (SSWs) are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs) with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the "hiccup", and which acts like a "mini SSW", i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69° N, 16° E) for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.

Loading...
Thumbnail Image
Item

Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16

2017-6-12, Stober, Gunter, Matthias, Vivien, Jacobi, Christoph, Wilhelm, Sven, Höffner, Josef, Chau, Jorge L.

The 2015/16 Northern Hemisphere winter season was marked by peculiarities in the circulation pattern in the high-latitude mesopause region. Wind measurements from the Andenes (69° N, 13° E) meteor radar show westward winds below 84 km and eastward winds above. This wind pattern in the zonal wind was observable between the end of December 2015 and the end of January 2016, i.e., conditions that are typical for the summer were found during winter. Additional meteor radar measurements at midlatitude stations did not show such a zonal wind reversal but indicate, together with the polar latitude stations, a reversal of the horizontal temperature gradient. This is confirmed by global satellite measurements. Therefore, it is plausible that the polar latitude summer-like zonal wind reversal in December–January is in accordance with the reversed horizontal temperature gradient assuming a thermal wind balance between mid- and polar latitudes. The reversed horizontal temperature gradient itself is induced by stationary planetary waves at lower and midlatitudes in the mesosphere, leading to a weakening of the residual circulation above the European sector.

Loading...
Thumbnail Image
Item

Daytime ozone loss term in the mesopause region

2017-5-23, Kulikov, Mikhail Y., Belikovich, Mikhail V., Grygalashvyly, Mykhaylo, Sonnemann, Gerd R., Ermakova, Tatiana S., Nechaev, Anton A., Feigin, Alexander M.

For the retrieval of atomic oxygen via ozone observations in the extended mesopause region under sunlight conditions, two assumptions are used: first, the photochemical equilibrium of ozone and, second, that the ozone losses are dominated by ozone's dissociation from solar UV radiation, silently ignoring the O3 destruction by atomic hydrogen. We verify both by 3-D modeling. We found that ozone approaches photochemical equilibrium at 75–100 km for daytime conditions. Hence, the first assumption is valid. However, the reaction of ozone with atomic hydrogen was found to be an important loss process and should not be omitted in retrieving atomic oxygen.

Loading...
Thumbnail Image
Item

Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

2015, Iimura, H., Fritts, D.C., Janches, D., Singer, W., Mitchell, N.J.

A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s−1. Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied.

Loading...
Thumbnail Image
Item

First experimental verification of summertime mesospheric momentum balance based on radar wind measurements at 69° N

2015, Placke, M., Hoffmann, P., Rapp, M.

Gravity waves (GWs) greatly influence the background state of the middle atmosphere by imposing their momentum on the mean flow upon breaking and by thus driving, e.g., the upper mesospheric summer zonal wind reversal. In this situation momentum is conserved by a balance between the vertical divergence of GW momentum flux (the so-called GW drag) and the Coriolis acceleration of the mean meridional wind. In this study, we present first quantitative mean annual cycles of these two balancing quantities from the medium frequency Doppler radar at the polar site Saura (SMF radar, 69° N, 16° E). Three-year means for 2009 through 2011 clearly show that the observed zonal momentum balance between 70 and 100 km with contributions from GWs only is fulfilled during summer when GW activity is strongest and more stable than in winter. During winter, the balance between GW drag and Coriolis acceleration of the mean meridional wind is not existent, which is likely due to the additional contribution from planetary waves, which are not considered by the present investigation. The differences in the momentum balance between summer and winter conditions are additionally clarified by 3-month mean vertical profiles for summer 2010 and winter 2010/2011.

Loading...
Thumbnail Image
Item

Hydroxyl layer: trend of number density and intra-annual variability

2015, Sonnemann, G.R., Hartogh, P., Berger, U., Grygalashvyly, M.

The layer of vibrationally excited hydroxyl (OH*) near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014), the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere). In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs) has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced chemical oscillator driven by the diurnal-periodic solar insolation. At the height of the OH* layer the system operates in the vicinity of chemical resonance. The solar cycle is mirrored in the data, but the long-term behavior due to the trend in the Lyman-α radiation is very small. The number density shows distinct hemispheric differences. The calculated OH* values show sometimes a step around a certain year. We introduce a method to find out the date of this step and discuss a possible reason for such behavior.

Loading...
Thumbnail Image
Item

On the short-term variability of turbulence and temperature in the winter mesosphere

2018-8-15, Lehmacher, Gerald A., Larsen, Miguel F., Collins, Richard L., Barjatya, Aroh, Strelnikov, Boris

Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0

Loading...
Thumbnail Image
Item

High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – Part 1: frequency spectrum

2018-4-3, Li, Qiang, Rapp, Markus, Stober, Gunter, Latteck, Ralph

The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb–Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s−1) are much steeper than during quiet periods (with wind velocity < 10 m s−1). The distribution of spectral slopes is roughly symmetric with a maximum at −5/3 during active periods, whereas a very asymmetric distribution with a maximum at around −1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of −5/3 at a wind velocity of 10 m s−1 and then roughly maintain this slope (−5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

Loading...
Thumbnail Image
Item

Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY

2016, Sommer, Svenja, Chau, Jorge L.

A recent study has hypothesized that polar mesospheric summer echoes (PMSEs) might consist mainly of localized isotropic scattering. These results have been inferred from indirect measurements. Using radar imaging with the Middle Atmosphere Alomar Radar System (MAARSY), we observed horizontal structures that support our previous findings. We observe that small-scale irregularities, causing isotropic scattering, are organized in patches. We find that patches of PMSEs, as observed by the radar, are usually smaller than 1 km. These patches occur throughout the illuminated volume, supporting that PMSEs are caused by localized isotropic or inhomogeneous scattering. Furthermore, we show that imaging can be used to identify side lobe detections, which have a significant influence even for narrow beam observations. Improved spectra estimations are obtained by selecting the desired volume to study parameters such as spectral width and to estimate the derived energy dissipation rates. In addition, a combined wide beam experiment and radar imaging is used to resolve the radial velocity and spectral width at different volumes within the illuminated volume.

Loading...
Thumbnail Image
Item

Semi-annual variation of excited hydroxyl emission at mid-latitudes

2021, Grygalashvyly, Mykhaylo, Pogoreltsev, Alexander I., Andreyev, Alexey B., Smyshlyaev, Sergei P., Sonnemann, Gerd R.

Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl (OH∗) emissions at mid-latitudes (43∘ N) compared to those at low latitudes. This differs from the annual cycle at high latitudes. We examine this behaviour by utilising an OH∗ airglow model which was incorporated into a 3D chemistry–transport model (CTM). Through this modelling, we study the morphology of the excited hydroxyl emission layer at mid-latitudes (30–50∘ N), and we assess the impact of the main drivers of its semi-annual variation: temperature, atomic oxygen, and air density. We found that this shift in the semi-annual cycle is determined mainly by the superposition of annual variations of temperature and atomic oxygen concentration. Hence, the winter peak for emission is determined exclusively by atomic oxygen concentration, whereas the summer peak is the superposition of all impacts, with temperature taking a leading role.