Search Results

Now showing 1 - 10 of 35
  • Item
    DNA and RNA extraction and quantitative real-time PCR-based assays for biogas biocenoses in an interlaboratory comparison
    (Basel : MDPI, 2016) Lebuhn, Michael; Derenkó, Jaqueline; Rademacher, Antje; Helbig, Susanne; Munk, Bernhard; Pechtl, Alexander; Stolze, Yvonne; Prowe, Steffen; Schwarz, Wolfgang H.; Schlüter, Andreas; Liebl, Wolfgang; Klocke, Michael
    Five institutional partners participated in an interlaboratory comparison of nucleic acid extraction, RNA preservation and quantitative Real-Time PCR (qPCR) based assays for biogas biocenoses derived from different grass silage digesting laboratory and pilot scale fermenters. A kit format DNA extraction system based on physical and chemical lysis with excellent extraction efficiency yielded highly reproducible results among the partners and clearly outperformed a traditional CTAB/chloroform/isoamylalcohol based method. Analytical purpose, sample texture, consistency and upstream pretreatment steps determine the modifications that should be applied to achieve maximum efficiency in the trade-off between extract purity and nucleic acid recovery rate. RNA extraction was much more variable, and the destination of the extract determines the method to be used. RNA stabilization with quaternary ammonium salts was an as satisfactory approach as flash freezing in liquid N2. Due to co-eluted impurities, spectrophotometry proved to be of limited value for nucleic acid qualification and quantification in extracts obtained with the kit, and picoGreen® based quantification was more trustworthy. Absorbance at 230 nm can be extremely high in the presence of certain chaotropic guanidine salts, but guanidinium isothiocyanate does not affect (q)PCR. Absolute quantification by qPCR requires application of a reliable internal standard for which correct PCR efficiency and Y-intercept values are important and must be reported.
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Effect of Fans’ Placement on the Indoor Thermal Environment of Typical Tunnel-Ventilated Multi-Floor Pig Buildings Using Numerical Simulation
    (Basel : MDPI AG, 2022) Wang, Xiaoshuai; Cao, Mengbing; Hu, Feiyue; Yi, Qianying; Amon, Thomas; Janke, David; Xie, Tian; Zhang, Guoqiang; Wang, Kaiying
    An increasing number of large pig farms are being built in multi-floor pig buildings (MFPBs) in China. Currently, the ventilation system of MFPB varies greatly and lacks common standards. This work aims to compare the ventilation performance of three popular MFPB types with different placement of fans using the Computational Fluid Dynamics (CFD) technique. After being validated with field-measured data, the CFD models were extended to simulate the air velocity, air temperature, humidity, and effective temperature of the three MFPBs. The simulation results showed that the ventilation rate of the building with outflowing openings in the endwall and fans installed on the top of the shaft was approximately 25% less than the two buildings with fans installed on each floor. The ventilation rate of each floor increased from the first to the top floor for both buildings with a shaft, while no significant difference was observed in the building without a shaft. Increasing the shaft’s width could mitigate the variation in the ventilation rate of each floor. The effective temperature distribution at the animal level was consistent with the air velocity distribution. Therefore, in terms of the indoor environmental condition, the fans were recommended to be installed separately on each floor.
  • Item
    Impact of Camera Viewing Angle for Estimating Leaf Parameters of Wheat Plants from 3D Point Clouds
    (Basel : MDPI, 2021) Li, Minhui; Shamshiri, Redmond R.; Schirrmann, Michael; Weltzien, Cornelia
    Estimation of plant canopy using low-altitude imagery can help monitor the normal growth status of crops and is highly beneficial for various digital farming applications such as precision crop protection. However, extracting 3D canopy information from raw images requires studying the effect of sensor viewing angle by taking into accounts the limitations of the mobile platform routes inside the field. The main objective of this research was to estimate wheat (Triticum aestivum L.) leaf parameters, including leaf length and width, from the 3D model representation of the plants. For this purpose, experiments with different camera viewing angles were conducted to find the optimum setup of a mono-camera system that would result in the best 3D point clouds. The angle-control analytical study was conducted on a four-row wheat plot with a row spacing of 0.17 m and with two seeding densities and growth stages as factors. Nadir and six oblique view image datasets were acquired from the plot with 88% overlapping and were then reconstructed to point clouds using Structure from Motion (SfM) and Multi-View Stereo (MVS) methods. Point clouds were first categorized into three classes as wheat canopy, soil background, and experimental plot. The wheat canopy class was then used to extract leaf parameters, which were then compared with those values from manual measurements. The comparison between results showed that (i) multiple-view dataset provided the best estimation for leaf length and leaf width, (ii) among the single-view dataset, canopy, and leaf parameters were best modeled with angles vertically at -45⸰_ and horizontally at 0⸰_ (VA -45, HA 0), while (iii) in nadir view, fewer underlying 3D points were obtained with a missing leaf rate of 70%. It was concluded that oblique imagery is a promising approach to effectively estimate wheat canopy 3D representation with SfM-MVS using a single camera platform for crop monitoring. This study contributes to the improvement of the proximal sensing platform for crop health assessment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    The Effect of Diet and Farm Management on N2O Emissions from Dairy Farms Estimated from Farm Data
    (Basel : MDPI, 2021) Menardo, Simona; Lanza, Giacomo; Berg, Werner
    The N2O emissions of 21 dairy farms in Germany were evaluated to determine the feasi-bility of an estimation of emissions from farm data and the effects of the farm management, along with possible mitigation strategies. Emissions due to the application of different fertilisers, manure storage and grazing were calculated based on equations from the IPCC (Intergovernmental Panel of Climate Change) and German emission inventory. The dependence of the N2O emissions on fertiliser type and quantity, cultivated crops and diet composition was assessed via correlation analysis and linear regression. The N2O emissions ranged between 0.11 and 0.29 kg CO2eq per kilogram energy-corrected milk, with on average 60% resulting from fertilisation and less than 30% from fertiliser storage and field applications. The total emissions had a high dependence on the diet composition; in particular, on the grass/maize ratio and the protein content of the animal diet, as well as from the manure management. A linear model for the prediction of the N2O emissions based on the diet composition and the fertilisation reached a predictive power of R2 = 0.89. As a possible mitigation strategy, the substitution of slurry for solid manure would reduce N2O emissions by 40%. Feeding cows maize-based diets instead of grass-based diets could reduce them by 14%. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    An extended hybrid input-output model applied to fossil- and bio-based plastics
    (Amsterdam [u.a.] : Elsevier, 2021) Jander, Wiebke
    Matrix augmentation method is developed further and described transparently for enabling more specific input-output analyses of bio- vs. fossil-based sectors. A number of economic and environmental effects of substitution can be estimated, compared, and managed. While the model was applied for the first time to the German plastics industry, it can be well integrated into existing bioeconomy monitorings to represent substitution in sectors and countries. • Original matrix augmentation method is described in much detail for the first time considering available data for bio- and fossil-based industries. • Particular attention is paid to balancing cost and benefit in model building so that indicators can be integrated in a continuous monitoring of the bioeconomy. Hence, industry data is prefered to process data whenever possible. • Input structures of bio-based imports are considered in single-region input-output analysis.
  • Item
    Indicative Marker Microbiome Structures Deduced from the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters of 49 Agricultural Biogas Plants
    (Basel : MDPI, 2021) Hassa, Julia; Klang, Johanna; Benndorf, Dirk; Pohl, Marcel; Hülsemann, Benedikt; Mächtig, Torsten; Effenberger, Mathias; Pühler, Alfred; Schlüter, Andreas; Theuerl, Susanne
    There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.
  • Item
    Integrative programming for simulation of packaging headspace and shelf life of fresh produce
    (Amsterdam [u.a.] : Elsevier, 2021) Jalali, Ali; Linke, Manfred; Geyer, Martin; Mahajan, Pramod
    Fresh horticultural products are exposed to different environmental conditions from farm to fork. Barrier properties of packaging and physiological behaviour of produce, namely respiration and transpiration can affect headspace conditions surrounding produce and consequently remaining shelf life. Packaging material also plays a role in heat and mass transfer, such as thermal conduction and permeation of O2, CO2 and water vapour. All of these behaviours are integrated together in the form of ordinary differential equations and solved using numerical methods in MATLAB. • The simulation program is useful for designing the size and number of perforations to achieve equilibrium modified atmosphere alone or in combination with packaging material having a higher water transmission rate or active moisture absorber. • The simulation program is also useful for predicting the shelf life of fresh produce under the actual supply chain conditions. • The simulation program provides a flexible system to input predefined supply chain conditions and the properties of fresh produce and packaging material, thus, minimizing the costly and time consuming experimental procedures for selecting the optimum packaging material for fresh produce.
  • Item
    The Role of Streptococcus spp. in Bovine Mastitis
    (Basel : MDPI, 2021) Kabelitz, Tina; Aubry, Etienne; van Vorst, Kira; Amon, Thomas; Fulde, Marcus
    The Streptococcus genus belongs to one of the major pathogen groups inducing bovine mastitis. In the dairy industry, mastitis is the most common and costly disease. It not only negatively impacts economic profit due to milk losses and therapy costs, but it is an important animal health and welfare issue as well. This review describes a classification, reservoirs, and frequencies of the most relevant Streptococcus species inducing bovine mastitis (S. agalactiae, S. dysgalactiae and S. uberis). Host and environmental factors influencing mastitis susceptibility and infection rates will be discussed, because it has been indicated that Streptococcus herd prevalence is much higher than mastitis rates. After infection, we report the sequence of cow immune reactions and differences in virulence factors of the main Streptococcus species. Different mastitis detection techniques together with possible conventional and alternative therapies are described. The standard approach treating streptococcal mastitis is the application of ß-lactam antibiotics. In streptococci, increased antimicrobial resistance rates were identified against enrofloxacin, tetracycline, and erythromycin. At the end, control and prevention measures will be considered, including vaccination, hygiene plan, and further interventions. It is the aim of this review to estimate the contribution and to provide detailed knowledge about the role of the Streptococcus genus in bovine mastitis.
  • Item
    Chlorophyll fluorescence imaging for process optimisation in horticulture and fresh food production
    (Praha : Institute of Experimental Botany, 2021) Herppich, W.B.
    Chlorophyll a fluorescence analysis (CFA) has been accepted to study postharvest activity and stability of photosynthesis of vegetables and salad greens, and some fruits. Commercial chlorophyll fluorescence imaging (CFI) systems may provide additional insight into spatial and temporal dynamics of photosynthesis. This yields valuable information on the effects of postharvest handling and processing (sorting, cutting, packaging, etc.) on physiological activity and 'internal quality' of green produce, and its changes. Here, meaning and physiological basics of relevant fluorescence parameters is briefly summarised, while major focus is on recent applications of CFI to evaluate quality and quality maintenance during postharvest handling and minimal processing of fresh fruits and vegetables. CFI is given surprisingly little attention in the monitoring of postharvest quality, although it is suitable for adjusting and/or optimising innovative postharvest techniques. Knowledge of the physiological base and the limit of interpretation is indispensable for meaningful interpretations of results to draw correct consequences.