Search Results

Now showing 1 - 2 of 2
  • Item
    Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites
    (Amsterdam [u.a.] : Elsevier Science, 2020) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.
  • Item
    Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings
    (Munich : EGU, 2012) Günther, T.; Müller-Petke, M.
    For reliably predicting the impact of climate changes on salt/freshwater systems below barrier islands, a long-term hydraulic modelling is inevitable. As input we need the parameters porosity, salinity and hydraulic conductivity at the catchment scale, preferably non-invasively acquired with geophysical methods. We present a methodology to retrieve the searched parameters and a lithological interpretation by the joint analysis of magnetic resonance soundings (MRS) and vertical electric soundings (VES). Both data sets are jointly inverted for resistivity, water content and decay time using a joint inversion scheme. Coupling is accomplished by common layer thicknesses. We show the results of three soundings measured on the eastern part of the North Sea island of Borkum. Pumping test data is used to calibrate the petrophysical relationship for the local conditions in order to estimate permeability from nuclear magnetic resonance (NMR) data. Salinity is retrieved from water content and resistivity using a modified Archie equation calibrated by local samples. As a result we are able to predict porosity, salinity and hydraulic conductivities of the aquifers, including their uncertainties. The joint inversion significantly improves the reliability of the results. Verification is given by comparison with a borehole. A sounding in the flooding area demonstrates that only the combined inversion provides a correct subsurface model. Thanks to the joint application, we are able to distinguish fluid conductivity from lithology and provide reliable hydraulic parameters as shown by uncertainty analysis. These findings can finally be used to build groundwater flow models for simulating climate changes. This includes the improved geometry and lithological attribution, and also the parameters and their uncertainties. © Author(s) 2012.