Search Results

Now showing 1 - 10 of 98
  • Item
    Efficient alkane oxidation under combustion engine and atmospheric conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Wang, Zhandong; Ehn, Mikael; Rissanen, Matti P.; Garmash, Olga; Quéléver, Lauriane; Xing, Lili; Monge-Palacios, Manuel; Rantala, Pekka; Donahue, Neil M.; Berndt, Torsten; Sarathy, S. Mani
    Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6–C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
  • Item
    Electrochemical growth mechanism of nanoporous platinum layers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Stanca, Sarmiza-Elena; Vogt, Oliver; Zieger, Gabriel; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Rettenmayr, Markus; Schmidt, Heidemarie
    Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.
  • Item
    Magnetocaloric performance of the three-component Ho1-xErxNi2 (x = 0.25, 0.5, 0.75) Laves phases as composite refrigerants
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Ćwik, Jacek; Koshkid’ko, Yurii; Nenkov, Konstantin; Tereshina-Chitrova, Evgenia; Małecka, Małgorzata; Weise, Bruno; Kowalska; Karolina
    To date, significant efforts have been put into searching for materials with advanced magnetocaloric properties which show promise as refrigerants and permit realization of efficient cooling. The present study, by an example of Ho1−xErxNi2, develops the concept of magnetocaloric efficiency in the rare-earth Laves-phase compounds. Based on the magneto-thermodynamic properties, their potentiality as components of magnetocaloric composites is illustrated. The determined regularities in the behaviour of the heat capacity, magnetic entropy change, and adiabatic temperature change of the system substantiate reaching high magnetocaloric potentials in a desired temperature range. For the Ho1−xErxNi2 solid solutions, we simulate optimal molar ratios and construct the composites used in magnetic refrigerators performing an Ericsson cycle at low temperatures. The tailored magnetocaloric characteristics are designed and efficient procedures for their manufacturing are developed. Our calculations based on the real empirical data are very promising and open avenue to further experimental studies. Systems showing large magnetocaloric effect (MCE) at low temperatures are of importance due to their potential utilization in refrigeration for gas liquefaction.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Systematic evaluation of particle loss during handling in the percutaneous transluminal angioplasty for eight different drug-coated balloons
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Heinrich, Andreas; Engler, Martin S.; Güttler, Felix V.; Matthäus, Christian; Popp, Jürgen; Teichgräber, Ulf K.-M.
    Paclitaxel drug coated balloons (DCBs) should provide optimal drug transfer exclusively to the target tissue. The aim of this study was to evaluate the particle loss by handling during angioplasty. A robotic arm was developed for systematic and reproducible drug abrasion experiments. The contact force on eight different commercially available DCB types was gradually increased, and high-resolution microscopic images of the deflated and inflated balloons were recorded. Three types of DCBs were classified: no abrasion of the drug in both statuses (deflated and inflated), significant abrasion only in the inflated status, and significant abrasion in both statuses. Quantitative measurements via image processing confirmed the qualitative classification and showed changes of the drug area between 2.25 and 45.73% (13.28 ± 14.29%) in the deflated status, and between 1.66 and 40.41% (21.43 ± 16.48%) in the inflated status. The structures and compositions of the DCBs are different, some are significantly more susceptible to drug loss. Particle loss by handling during angioplasty leads to different paclitaxel doses in the target regions for same DCB types. Susceptibility to involuntary drug loss may cause side effects, such as varying effective paclitaxel doses, which may explain variations in studies regarding the therapeutic outcome.
  • Item
    Worldwide variations in artificial skyglow
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Kyba, Christopher C.M.; Tong, Kai Pong; Bennie, Jonathan; Birriel, Ignacio; Birriel, Jennifer J.; Cool, Andrew; Danielsen, Arne; Davies, Thomas W.; den Outer, Peter N.; Edwards, William; Ehlert, Rainer; Falchi, Fabio; Fischer, Jürgen; Giacomelli, Andrea; Giubbilini, Francesco; Haaima, Marty; Hesse, Claudia; Heygster, Georg; Hölker, Franz; Inger, Richard; Jensen, Linsey J.; Kuechly, Helga U.; Kuehn, John; Langill, Phil; Lolkema, Dorien E.; Nagy, Matthew; Nievas, Miguel; Ochi, Nobuaki; Popow, Emil; Posch, Thomas; Puschnig, Johannes; Ruhtz, Thomas; Schmidt, Wim; Schwarz, Robert; Schwope, Axel; Spoelstra, Henk; Tekatch, Anthony; Trueblood, Mark; Walker, Constance E.; Weber, Michael; Welch, Douglas L.; Zamorano, Jaime; Gaston, Kevin J.
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.
  • Item
    Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Knorr, Anne; Ludwig, Ralf
    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.
  • Item
    Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Yu. S.
    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.
  • Item
    Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pfrommer, E.; Dreier, C.; Gabriel, G.; Dallenga, T.; Reimer, R.; Schepanski, K.; Scherließ, R.; Schaible, U.E.; Gutsmann, T.
    The tuberculosis agent Mycobacterium tuberculosis is primarily transmitted through air, but little is known about the tenacity of mycobacterium-containing aerosols derived from either suspensions or infected neutrophils. Analysis of mycobacterial aerosol particles generated from bacterial suspensions revealed an average aerodynamic diameter and mass density that may allow distant airborne transmission. The volume and mass of mycobacterial aerosol particles increased with elevated relative humidity. To more closely mimic aerosol formation that occurs in active TB patients, aerosols from mycobacterium-infected neutrophils were analysed. Mycobacterium-infected intact neutrophils showed a smaller particle size distribution and lower viability than free mycobacteria. In contrast, mycobacterium-infected necrotic neutrophils, predominant in M. tuberculosis infection, revealed particle sizes and viability rates similar to those found for free mycobacteria, but in addition, larger aggregates of viable mycobacteria were observed. Therefore, mycobacteria are shielded from environmental stresses in multibacillary aggregates generated from necrotic neutrophils, which allows improved tenacity but emphasizes short distance transmission between close contacts.
  • Item
    Aqueous Black Colloids of Reticular Nanostructured Gold
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Stanca, S.E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.
    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.