Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Early retirement of power plants in climate mitigation scenarios

2020, Fofrich, Robert, Tong, Dan, Calvin, Katherine, De Boer, Harmen Sytze, Emmerling, Johannes, Fricko, Oliver, Fujimori, Shinichiro, Luderer, Gunnar, Rogelj, Joeri, Davis, Steven J.

International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.

Loading...
Thumbnail Image
Item

International comparison of health care carbon footprints

2019, Pichler, Peter-Paul, Jaccard, Ingram S., Weisz, Ulli, Weisz, Helga

Climate change confronts the health care sector with a dual challenge. Accumulating climate impacts are putting an increased burden on the service provision of already stressed health care systems in many regions of the world. At the same time, the Paris agreement requires rapid emission reductions in all sectors of the global economy to stay well below the 2 °C target. This study shows that in OECD countries, China, and India, health care on average accounts for 5% of the national CO2 footprint making the sector comparable in importance to the food sector. Some countries have seen reduced CO2 emissions related to health care despite growing expenditures since 2000, mirroring their economy wide emission trends. The average per capita health carbon footprint across the country sample in 2014 was 0.6 tCO2, varying between 1.51 tCO2/cap in the US and 0.06 tCO2/cap in India. A statistical analysis shows that the carbon intensity of the domestic energy system, the energy intensity of the domestic economy, and health care expenditure together explain half of the variance in per capita health carbon footprints. Our results indicate that important leverage points exist inside and outside the health sector. We discuss our findings in the context of the existing literature on the potentials and challenges of reducing GHG emissions in the health and energy sector.

Loading...
Thumbnail Image
Item

Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change

2019, Shiogama, Hideo, Hasegawa, Tomoko, Fujimori, Shinichiro, Murakami, Daisuke, Takahashi, Kiyoshi, Tanaka, Katsumasa, Emori, Seita, Kubota, Izumi, Abe, Manabu, Imada, Yukiko, Watanabe, Masahiro, Mitchell, Daniel, Schaller, Nathalie, Sillmann, Jana, Fischer, Erich M., Scinocca, John F., Bethke, Ingo, Lierhammer, Ludwig, Takakura, Jun’ya, Trautmann, Tim, Döll, Petra, Ostberg, Sebastian, Müller Schmied, Hannes, Saeed, Fahad, Schleussner, Carl-Friedrich

Clarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.

Loading...
Thumbnail Image
Item

Implications of non-linearities between cumulative CO2 emissions and CO2-induced warming for assessing the remaining carbon budget

2020, Nicholls, Z.R.J., Gieseke, R., Lewis, J., Nauels, A., Meinshausen, M.

To determine the remaining carbon budget, a new framework was introduced in the Intergovernmental Panel on Climate Change's Special Report on Global Warming of 1.5 °C (SR1.5). We refer to this as a 'segmented' framework because it considers the various components of the carbon budget derivation independently from one another. Whilst implementing this segmented framework, in SR1.5 the assumption was that there is a strictly linear relationship between cumulative CO2 emissions and CO2-induced warming i.e. the TCRE is constant and can be applied to a range of emissions scenarios. Here we test whether such an approach is able to replicate results from model simulations that take the climate system's internal feedbacks and non-linearities into account. Within our modelling framework, following the SR1.5's choices leads to smaller carbon budgets than using simulations with interacting climate components. For 1.5 °C and 2 °C warming targets, the differences are 50 GtCO2 (or 10%) and 260 GtCO2 (or 17%), respectively. However, by relaxing the assumption of strict linearity, we find that this difference can be reduced to around 0 GtCO2 for 1.5 °C of warming and 80 GtCO2 (or 5%) for 2.0 °C of warming (for middle of the range estimates of the carbon cycle and warming response to anthropogenic emissions). We propose an updated implementation of the segmented framework that allows for the consideration of non-linearities between cumulative CO2 emissions and CO2-induced warming.

Loading...
Thumbnail Image
Item

Integrate health into decision-making to foster climate action

2021-4-8, Vandyck, Toon, Rauner, Sebastian, Sampedro, Jon, Lanzi, Elisa, Reis, Lara Aleluia, Springmann, Marco, Dingenen, Rita Van

The COVID-19 pandemic reveals that societies place a high value on healthy lives. Leveraging this momentum to establish a more central role for human health in the policy process will provide further impetus to a sustainable transformation of energy and food systems.

Loading...
Thumbnail Image
Item

The role of beliefs, expectations and values in decision-making favoring climate change adaptation—implications for communications with European forest professionals

2020, Blennow, K., Persson, J., Gonçalves, L.M.S., Borys, A., Dutcă, I., Hynynen, J., Janeczko, E., Lyubenova, M., Merganič, J., Merganičová, K., Peltoniemi, M., Petr, M., Reboredo, F., Vacchiano, G., Reyer, C.P.O.

Beliefs, expectations and values are often assumed to drive decisions about climate change adaptation. We tested hypotheses based on this assumption using survey responses from 508 European forest professionals in ten countries. We used the survey results to identify communication needs and the decision strategies at play, and to develop guidelines on adequate communications about climate change adaptation. We observed polarization in the positive and negative values associated with climate change impacts accepted by survey respondents. We identified a mechanism creating the polarization that we call the 'blocked belief' effect. We found that polarized values did not correlate with decisions about climate change adaptation. Strong belief in the local impacts of climate change on the forest was, however, a prerequisite of decision-making favoring adaptation. Decision-making in favor of adaptation to climate change also correlated with net values of expected specific impacts on the forest and generally increased with the absolute value of these in the absence of 'tipping point' behavior. Tipping point behavior occurs when adaptation is not pursued in spite of the strongly negative or positive net value of expected climate change impacts. We observed negative and positive tipping point behavior, mainly in SW Europe and N-NE Europe, respectively. In addition we found that advice on effective adaptation may inhibit adaptation when the receiver is aware of effective adaptation measures unless it is balanced with information explaining how climate change leads to negative impacts. Forest professionals with weak expectations of impacts require communications on climate change and its impacts on forests before any advice on adaptation measures can be effective. We develop evidence-based guidelines on communications using a new methodology which includes Bayesian machine learning modeling of the equivalent of an expected utility function for the adaptation decision problem.

Loading...
Thumbnail Image
Item

Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C

2019, Stenzel, Fabian, Gerten, Dieter, Werner, Constanze, Jägermeyr, Jonas

Limiting mean global warming to well below 2 °C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 °C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 °C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ∼400 and ∼3000 km3 yr−1, depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management.