Search Results

Now showing 1 - 10 of 15
Loading...
Thumbnail Image
Item

240-GHz Reflectometer-Based Dielectric Sensor With Integrated Transducers in a 130-nm SiGe BiCMOS Technology

2021, Wang, Defu, Eissa, Mohamed Hussein, Schmalz, Klaus, Kampfe, Thomas, Kissinger, Dietmar

This article presents a reflectometer-based on-chip dielectric sensor with integrated transducers at 240 GHz. The chip simplifies the measurement of a vector network analyzer (VNA) to sense the incident and reflected waves by using two heterodyne mixer-based receivers with a dielectric sensing element. Radio frequency (RF) and local oscillator (LO) submillimeter waves are generated by two frequency multiplier chains, respectively. Two back-to-back identical differential side-coupled directive couplers are proposed to separate the incident and reflected signals and couple them to mixers. Both transmission line and coplanar stripline transducers are proposed and integrated with reflectometer to investigate the sensitivity of dielectric sensors. The latter leads to a larger power variation of the reflectometer by providing more sufficient operating bands for the magnitude and phase slope of S11 . The readout of the transducers upon exposure to liquids is performed by the measurement of their reflected signals using two external excitation sources. The experimental dielectric sensing is demonstrated by using binary methanol–ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board. It enables a maximum 8 dB of the power difference between the incident and reflected channels on the measurement of liquid solvents. Both chips occupy an area of 4.03 mm 2 and consume 560 mW. Along with a wide operational frequency range from 200 to 240 GHz, this simplified one-port-VNA-based on-chip device makes it feasible for the use of handle product and suitable for the submillimeter-wave dielectric spectroscopy applications.

Loading...
Thumbnail Image
Item

Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz

2021, Schmalz, Klaus, Rothbart, Nick, Gluck, Alexandra, Eissa, Mohamed Hussein, Mausolf, Thomas, Turkmen, Esref, Yilmaz, Selahattin Berk, Hubers, Heinz-Wilhelm

This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 - 256 GHz and 250 - 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules.

Loading...
Thumbnail Image
Item

Efficient Current Injection Into Single Quantum Dots Through Oxide-Confined p-n-Diodes

2016, Kantner, Markus, Bandelow, Uwe, Koprucki, Thomas, Schulze, Jan-Hindrik, Strittmatter, Andre, Wunsche, Hans-Jurgen

Current injection into single quantum dots embedded in vertical p-n-diodes featuring oxide apertures is analyzed in the low-injection regime suitable for single-photon emitters. The experimental and theoretical evidence is found for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design. By an alternative design employing p-doping up to the oxide aperture, the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies, both, in the continuous wave and under pulsed excitation.

Loading...
Thumbnail Image
Item

Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification

2020, Ali, Nairveen, Kirchhoff, Johanna, Onoja, Patrick Igoche, Tannert, Astrid, Neugebauer, Ute, Popp, Jürgen, Bocklitz, Thomas

The antibiotic resistance of bacterial pathogens has become one of the most serious global health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages and limitations in clinical applications. In this contribution, we aim to assess and automate the detection of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using a combination of image processing and machine learning algorithms. Therein, microscopic images were collected from different E. coli strains, then the convolutional neural network U-Net was implemented to segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively. The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not fully detected by the proposed method.

Loading...
Thumbnail Image
Item

Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies

2021, Kissinger, Dietmar, Kahmen, Gerhard, Weigel, Robert

This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance.

Loading...
Thumbnail Image
Item

A TOPSIS-Assisted Feature Selection Scheme and SOM-Based Anomaly Detection for Milling Tools Under Different Operating Conditions

2021, Assafo, Maryam, Langendorfer, Peter

Anomaly detection modeled as a one-class classification is an essential task for tool condition monitoring (TCM) when only the normal data are available. To confront with the real-world settings, it is crucial to take the different operating conditions, e.g., rotation speed, into account when approaching TCM solutions. This work mainly addresses issues related to multi-operating-condition TCM models, namely the varying discriminability of sensory features with different operating conditions; the overlap between normal and anomalous data; and the complex structure of input data. A feature selection scheme is proposed in which the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is presented as a tool to aid the multi-objective selection of sensory features. In addition, four anomaly detection approaches based on Self-Organizing Map (SOM) are studied. To examine the stability of the four approaches, they are applied on different single-operating-condition models. Further, to examine their robustness when dealing with complex data structures, they are applied on multi-operating-condition models. The experimental results using the NASA Milling Data Set showed that all the studied anomaly detection approaches achieved a higher assessment accuracy with our feature selection scheme as compared to the Principal Component Analysis (PCA), Laplacian Score (LS), and extended LS in which we added a final step to the original LS method in order to eliminate redundant features.

Loading...
Thumbnail Image
Item

Stability of ZnSe-Passivated Laser Facets Cleaved in Air and in Ultra-High Vacuum

2022, Boschker, Jos E., Spengler, Uwe, Ressel, Peter, Schmidbauer, Martin, Mogilatenko, Anna, Knigge, Andrea

Catastrophic optical mirror damage (COMD) is one of the main failure mechanisms limiting the reliability of GaAs based laser diodes. Here, we compare the facet stability of ZnSe-passivated ridge-waveguide lasers (RWLs) that are cleaved in air and subsequently cleaned using atomic hydrogen with RWLs that are cleaved in ultra-high vacuum. RWLs cleaved in ultra-high vacuum show a superior performance and reach power densities up to 58 MW/cm 2 under extended continuous wave operation at 1064 nm. This is attributed to the reduction of defects at the interface between ZnSe and the cleaved facet as evidenced by transmission electron microscopy and X-ray diffraction.

Loading...
Thumbnail Image
Item

Fast-Slow-Scale Interaction Induced Parallel Resonance and its Suppression in Voltage Source Converters

2021, Ma, Rui, Qiu, Qi, Kurths, Jürgen, Zhan, Meng

Multi-timescale interaction of power electronics devices, including voltage source converter (VSC), has made the stability and analysis of high penetrating renewable power systems very complicated. In this paper, the impedance model is used to analyze the multi-timescale characteristics and interaction of the VSC. Firstly, the multi-timescale impedance characteristics of VSC are investigated based on the Bode plots. It is found that the slow-timescale (within the DC-link voltage control scale) and fast-timescale (within the AC current control scale) models are separately consistent with the full-order model perfectly within their low- and high-frequency ranges. In addition, there exists a high impedance peak within the intermediate frequency range (roughly from 10 Hz to 100 Hz). Then, the impedance peak is theoretically estimated and explained by the slow-fast-scale impedance parallel resonance through transfer-function diagram analysis. Moreover, it is found that the impedance peak is more related to some outer controllers, such as the alternative voltage control and active power control. Specifically, larger proportional coefficients can greatly suppress the resonance peak. Finally, simulations and experiments are conducted to verify the generality of the multi-timescale characteristics and interaction of the VSC. Hence these findings are not only significant to provide a physical insight into the inner key structure of the impedance of VSC, but also expected to be helpful for controller and parameter design of the VSC.

Loading...
Thumbnail Image
Item

IEEE Access Special Section Editorial: Recent Advances on Hybrid Complex Networks: Analysis and Control

2021, Lu, Jianquan, Ho, Daniel W. C., Huang, Tingwen, Kurths, Jurgen, Trajkovic, Ljiljana

Complex networks typically involve multiple disciplines due to network dynamics and their statistical nature. When modeling practical networks, both impulsive effects and logical dynamics have recently attracted increasing attention. Hence, it is of interest and importance to consider hybrid complex networks with impulsive effects and logical dynamics. Relevant research is prevalent in cells, ecology, social systems, and communication engineering. In hybrid complex networks, numerous nodes are coupled through networks and their properties usually lead to complex dynamic behaviors, including discrete and continuous dynamics with finite values of time and state space. Generally, continuous and discrete sections of the systems are described by differential and difference equations, respectively. Logical networks are used to model the systems where time and state space take finite values. Although interesting results have been reported regarding hybrid complex networks, the analysis methods and relevant results could be further improved with respect to conservative impulsive delay inequalities and reproducibility of corresponding stability or synchronization criteria. Therefore, it is necessary to devise effective approaches to improve the analysis method and results dealing with hybrid complex networks.

Loading...
Thumbnail Image
Item

Modeling of edge-emitting lasers based on tensile strained germanium microstrips

2015, Peschka, D., Thomas, M., Glitzky, A., Nürnberg, R., Gärtner, K., Virgilio, M., Guha, S., Schroeder, T., Capellini, G., Koprucki, Th.

In this paper, we present a thorough modeling of an edge-emitting laser based on strained germanium (Ge) microstrips. The full-band structure of the tensile strained Ge layer enters the calculation of optical properties. Material gain for strained Ge is used in the 2D simulation of the carrier transport and of the optical field within a cross section of the microstrips orthogonal to the optical cavity. We study optoelectronic properties of the device for two different designs. The simulation results are very promising as they show feasible ways toward Ge emitter devices with lower threshold currents and higher efficiency as published insofar.