Search Results

Now showing 1 - 10 of 518
Loading...
Thumbnail Image
Item

Distribution of Cracks in a Chain of Atoms at Low Temperature

2021, Jansen, Sabine, König, Wolfgang, Schmidt, Bernd, Theil, Florian

We consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature 1/β∈(0,∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of Nexp(−βesurf/2) with esurf>0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.

Loading...
Thumbnail Image
Item

Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning

2021, Ernst, Owen C., Uebel, David, Kayser, Stefan, Lange, Felix, Teubner, Thomas, Boeck, Torsten

Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020

Loading...
Thumbnail Image
Item

A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions

2015, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.

Loading...
Thumbnail Image
Item

On the Differential Capacitance and Potential of Zero Charge of Au(111) in Some Aprotic Solvents

2021, Shatla, Ahmed S., Landstorfer, Manuel, Baltruschat, Helmut

Voltammetric and Gouy-Chapman capacitance minimum measurements were conducted on Au(111) and roughened Au(111) electrodes in aprotic electrolytes in the absence and presence of specifically adsorbed ions for concentrations ranging from 0.001 to 0.5 M. Negative of the point of zero charge (pzc), the capacitance maximum increases in the order Ca2+

Loading...
Thumbnail Image
Item

Local Well-Posedness of Strong Solutions to the Three-Dimensional Compressible Primitive Equations

2021, Liu, Xin, Titi, Edriss S.

This work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity. © 2021, The Author(s).

Loading...
Thumbnail Image
Item

Longtime behavior for a generalized Cahn-Hilliard system with fractional operators

2020, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn-Hilliard system, with possibly singular potentials, that we have recently investigated in the paper Well-posedness and regularity for a generalized fractional Cahn-Hilliard system. More precisely, we study the ω-limit of the phase parameter y and characterize it completely. Our characterization depends on the first eigenvalues λ1≥0 of one of the operators involved: if λ1>0, then the chemical potential μ vanishes at infinity and every element yω of the ω-limit is a stationary solution to the phase equation; if instead λ1=0, then every element yω of the ω-limit satisfies a problem containing a real function μ∞ related to the chemical potential μ. Such a function μ∞ is nonunique and time dependent, in general, as we show by an example. However, we give sufficient conditions for μ∞ to be uniquely determined and constant.

Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard nonlocal phase field system

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

Loading...
Thumbnail Image
Item

Assessment of Stability in Partitional Clustering Using Resampling Techniques

2016, Mucha, Hans-Joachim

The assessment of stability in cluster analysis is strongly related to the main difficult problem of determining the number of clusters present in the data. The latter is subject of many investigations and papers considering different resampling techniques as practical tools. In this paper, we consider non-parametric resampling from the empirical distribution of a given dataset in order to investigate the stability of results of partitional clustering. In detail, we investigate here only the very popular K-means method. The estimation of the sampling distribution of the adjusted Rand index (ARI) and the averaged Jaccard index seems to be the most general way to do this. In addition, we compare bootstrapping with different subsampling schemes (i.e., with different cardinality of the drawn samples) with respect to their performance in finding the true number of clusters for both synthetic and real data.

Loading...
Thumbnail Image
Item

Denoising for Improved Parametric MRI of the Kidney: Protocol for Nonlocal Means Filtering

2021, Starke, Ludger, Tabelow, Karsten, Niendorf, Thoralf, Pohlmann, Andreas, Pohlmann, Andreas, Niendorf, Thoralf

In order to tackle the challenges caused by the variability in estimated MRI parameters (e.g., T2* and T2) due to low SNR a number of strategies can be followed. One approach is postprocessing of the acquired data with a filter. The basic idea is that MR images possess a local spatial structure that is characterized by equal, or at least similar, noise-free signal values in vicinities of a location. Then, local averaging of the signal reduces the noise component of the signal. In contrast, nonlocal means filtering defines the weights for averaging not only within the local vicinity, bur it compares the image intensities between all voxels to define “nonlocal” weights. Furthermore, it generally compares not only single-voxel intensities but small spatial patches of the data to better account for extended similar patterns. Here we describe how to use an open source NLM filter tool to denoise 2D MR image series of the kidney used for parametric mapping of the relaxation times T2* and T2. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.

Loading...
Thumbnail Image
Item

Weak-strong uniqueness for the general Ericksen-Leslie system in three dimensions

2018, Emmrich, Etienne, Lasarzik, Robert

We study the Ericksen-Leslie system equipped with a quadratic free energy functional. The norm restriction of the director is incorporated by a standard relaxation technique using a double-well potential. We use the relative energy concept, often applied in the context of compressible Euler- or related systems of fluid dynamics, to prove weak-strong uniqueness of solutions. A main novelty, not only in the context of the Ericksen-Leslie model, is that the relative energy inequality is proved for a system with a nonconvex energy.