Search Results

Now showing 1 - 4 of 4
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Ice roads through lake-rich Arctic watersheds : Integrating climate uncertainty and freshwater habitat responses into adaptive management
    (London : Taylor & Francis Group, 2019) Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Nigro, D.A.; Alexeev, Vladimir; Gädeke, Anne; Fritz, Stacey; Daanen, Ronald; Liljedahl, Anna K.; Adams, F.J.; Gaglioti, Benjamin V.; Grosse, Guido; Heim, Kurt C.; Beaver, R.; Cai, Lei; Engram, Melanie; Uher-Koch, Hannah R.
    Vast mosaics of lakes, wetlands, and rivers on the Arctic Coastal Plain give the impression of water surplus. Yet long winters lock freshwater resources in ice, limiting freshwater habitats and water supply for human uses. Increasingly the petroleum industry relies on lakes to build temporary ice roads for winter oil exploration. Permitting water withdrawal for ice roads in Arctic Alaska is dependent on lake depth, ice thickness, and the fish species present. Recent winter warming suggests that more winter water will be available for ice- road construction, yet high interannual variability in ice thickness and summer precipitation complicates habitat impact assessments. To address these concerns, multidisciplinary researchers are working to understand how Arctic freshwater habitats are responding to changes in both climate and water use in northern Alaska. The dynamics of habitat availability and connectivity are being linked to how food webs support fish and waterbirds across diverse freshwater habitats. Moving toward watershed-scale habitat classification coupled with scenario analysis of climate extremes and water withdrawal is increasingly relevant to future resource management decisions in this region. Such progressive refinement in understanding responses to change provides an example of adaptive management focused on ensuring responsible resource development in the Arctic. © 2019, © 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.
  • Item
    Extending Near-Term Emissions Scenarios to Assess Warming Implications of Paris Agreement NDCs
    (Chichester : John Wiley and Sons Inc, 2018) Gütschow, J.; Jeffery, M.L.; Schaeffer, M.; Hare, B.
    In the Paris Agreement countries have agreed to act together to hold global warming well below 2°C over preindustrial levels and to pursue efforts to limit warming to 1.5°C. To assess if the world is on track to meet this long-term temperature goal, countries' pledged emissions reductions (Nationally Determined Contributions, NDCs) need to be analyzed for their implied warming. Several research groups and nongovernmental organizations have estimated this warming and arrived at very different results but have invariably concluded that the current pledges are inadequate to hold warming below 2°C, let alone 1.5°C. In this paper we analyze different methods to estimate 2100 global mean temperature rise implied by countries' NDCs, which often only specify commitments until 2030. We present different methods to extend near-term emissions pathways that have been developed by the authors or used by different research groups and nongovernmental organizations to estimate 21st century warming consequences of Paris Agreement commitments. The abilities of these methods to project both low and high warming scenarios in line with the scenario literature is assessed. We find that the simpler methods are not suitable for temperature projections while more complex methods can produce results consistent with the energy and economic scenario literature. We further find that some methods can have a strong high or low temperature bias depending on parameter choices. The choice of methods to evaluate the consistency of aggregated NDC commitments is very important for reviewing progress toward the Paris Agreement's long-term temperature goal.
  • Item
    Bioenergy for climate change mitigation: Scale and sustainability
    (Oxford : Wiley-Blackwell, 2021) Calvin, Katherine; Cowie, Annette; Berndes, Göran; Arneth, Almut; Cherubini, Francesco; Portugal‐Pereira, Joana; Grassi, Giacomo; House, Jo; Johnson, Francis X.; Popp, Alexander; Rounsevell, Mark; Slade, Raphael; Smith, Pete
    Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.