Search Results

Now showing 1 - 10 of 12
  • Item
    Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)
    (Chester : International Union of Crystallography, 2019) Joksch, M.; Spannenberg, A.; Beweries, T.
    In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.
  • Item
    Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)
    (London : Soc., 2020) Ullmann, Steve; Hahn, Peter; Mini, Parvathy; Tuck, Kellie L.; Kahnt, Axel; Abel, Bernd; Gutierrez Suburu, Matias E.; Strassert, Cristian A.; Kersting, Berthold
    The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.
  • Item
    Syntheses, crystal structure and magnetic properties of Tl9RETe6 (RE = Ce, Sm, Gd)
    (Basel : MDPI AG, 2020) Isaeva, A.; Schönemann, R.; Doert, T.
    The three compounds Tl9RETe6 with RE = Ce, Sm, Gd were synthesized from the elements at 1020 K. Their isostructural crystal structures are ordered derivatives of the Tl5Te3 type with rare-earth metal and thallium occupying different Wyckoff positions. The structures can be understood as charge-ordered in accordance with the Zintl-Klemm concept: 9 Tl+ + RE3+ + 6 Te2-. DFT calculations for Tl9GdTe6, however, result in a low, but finite density of states at the Fermi level. Magnetic data confirm trivalent Gd, but indicate a small amount of Ce4+ in Tl9CeTe6; no indications for long-range magnetic order was found down to T = 2 K.
  • Item
    Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes
    (London : Royal Society of Chemistry (RSC), 2021) Kranz, Christine; Wächtler, Maria
    Research on light-driven catalysis has gained tremendous importance due to the ever-increasing power consumption and the threatening situation of global warming related to burning fossil fuels. Significant efforts have been dedicated to artificial photosynthesis mimicking nature to split H2O into H2 and O2 by solar energy. Novel semiconductor und molecular photocatalysts focusing on one-step excitation processes via single component photocatalysts or via two-step excitation processes mimicking the Z-scheme of natural photosynthesis are currently developed. Analytical and physicochemical methods, which provide information at different time and length scales, are used to gain fundamental understanding of all processes leading to catalytic activity, i.e., light absorption, charge separation, transfer of charges to the reaction centres and catalytic turnover, but also understanding degradation processes of the photocatalytic active material. Especially, molecular photocatalysts still suffer from limited long-Term stability due to the formation of reactive intermediates, which may lead to degradation. Although there is an overwhelming number of research articles and reviews focussing on various materials for photocatalytic water splitting, to date only few reviews have been published providing a comprehensive overview on methods for characterizing such materials. This review will highlight spectroscopic, spectroelectrochemical, and electrochemical approaches in respect to their potential in studying processes in semiconductor and (supra)molecular photocatalysts. Special emphasis will be on spectroscopic methods to investigate light-induced processes in intermediates of sequential electron transfer chains. Further, microscopic characterization methods, which are predominantly used for semiconducting and hybrid photocatalytic materials will be reviewed as surface area, structure, facets, defects, and bulk properties such as crystallinity and crystal size are key parameters for charge separation, transfer processes and suppression of charge recombination. Recent developments in scanning probe microscopy will also be highlighted as such techniques are highly suited for studying photocatalytic active material. © The Royal Society of Chemistry.
  • Item
    Stabilizing a three-center single-electron metal–metal bond in a fullerene cage
    (Cambridge : RSC, 2021) Jin, Fei; Xin, Jinpeng; Guan, Runnan; Xie, Xiao-Ming; Chen, Muqing; Zhang, Qianyan; Popov, Alexey A.; Xie, Su-Yuan; Yang, Shangfeng
    Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy–Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2−@C806− and features an unprecedented three-center single-electron Dy–Dy–Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3−@C806− charge distribution and no metal–metal bonding.
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Phase equilibria in the Gd–Cr–Ge system at 1070 K
    (Ivano-Frankivsʹk : Fizyko-chimičnyj instytut DVNZ "Prykarpatsʹkyj nacionalʹnyj universytet imeni Vasylja Stefanyka", 2021) Konyk, M.; Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Pashkevych, V.
    The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd117Cr52Ge112 (Tb117Fe52Ge112 structure type,  space group Fm-3m, Pearson symbol cF1124, a = 2.8971(6) nm), GdCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, Pearson symbol hP16, a = 0.51797(2), c = 0.82901(4) nm) and GdCr1-хGe2 (CeNiSi2 structure type, space group Cmcm, Pearson symbol oS16, a = 0.41569(1)-0.41593(8), b = 1.60895(6)-1.60738(3), c = 0.40318(1)-0.40305(8) nm). For the GdCr1-xGe2 compound the homogeneity range was determined (x=0.73 – 0,69).
  • Item
    TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights
    (Washington, DC : American Chemical Society, 2020) Maletti, Sebastian; Herzog-Arbeitman, Abraham; Oswald, Steffen; Senyshyn, Anatoliy; Giebeler, Lars; Mikhailova, Daria
    As one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Society
  • Item
    1,1-Bis(di­phenyl­phosphor­yl)hydrazine
    (Chester : International Union of Crystallography, 2018) Höhne, Martha; Aluri, Bhaskar R.; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).
  • Item
    Di-μ-chlorido-bis­­({4-[bis­(tri­methylsilyl)amino]-6-chloro-2,2,8,8-tetra­methyl-5,7-bis­(tri­methylsilyl)-3,5,7-tri­aza-4,6-diphospha-2,8-disilanon-3-en-4-ido-κ2P,P′}palladium(II)) di­ethyl ether disolvate
    (Chester : International Union of Crystallography, 2016) Höhne, Martha; Müller, Bernd H.; Spannenberg, Anke; Rosenthal, Uwe
    The title compound, [Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10O, features a dinuclear chloride-bridged palladium complex bearing two equivalents of the novel monoanionic mixed valent (λ3-P)—N—(λ5-P) ligand. A metal catalyzed coupling of two amino­imino­phosphines and a shift of one chlorine from the metal to the phospho­rus results in the (λ3-P)—N—(λ5-P) ligand. The mol­ecule contains a planar bimetallic Pd2Cl2 core with a crystallographic centre of inversion at the mid-point of the Pd⋯Pd line. The Pd atoms are in a distorted square-planar arrangement, where the P/Pd/P and Cl/Pd/Cl planes are twisted with respect to each other by a dihedral angle of 7.57 (4)°. The P—Pd—P bite angle is 71.380 (18)°. Intra­molecular C—H⋯Cl inter­actions are observed. In the crystal, the diethyl ether solvent mol­ecule is disordered over two sites, with an occupancy ratio of 0.788 (5):0.212 (5).