Search Results

Now showing 1 - 2 of 2
  • Item
    Self-Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion
    (Weinheim : Wiley-VCH Verlag, 2020) Han, L.; Wang, M.; Prieto-López, L.O.; Deng, X.; Cui, J.
    Adhesive hydrogels are widely applied for biological and medical purposes; however, they are generally unable to adhere to tissues under wet/underwater conditions. Herein, described is a class of novel dynamic hydrogels that shows repeatable and long-term stable underwater adhesion to various substrates including wet biological tissues. The hydrogels have Fe3+-induced hydrophobic surfaces, which are dynamic and can undergo a self-hydrophobization process to achieve strong underwater adhesion to a diverse range of dried/wet substrates without the need for additional processes or reagents. It is also demonstrated that the hydrogels can directly adhere to biological tissues in the presence of under sweat, blood, or body fluid exposure, and that the adhesion is compatible with in vivo dynamic movements. This study provides a novel strategy for fabricating underwater adhesive hydrogels for many applications, such as soft robots, wearable devices, tissue adhesives, and wound dressings.
  • Item
    Double-Hydrophobic-Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling
    (Chichester : John Wiley and Sons Ltd, 2020) Mredha, M.T.I.; Le, H.H.; Cui, J.; Jeon, I.
    In recent years, various hydrogels with a wide range of functionalities have been developed. However, owing to the two major drawbacks of hydrogels—air-drying and water-swelling—hydrogels developed thus far have yet to achieve most of their potential applications. Herein, a bioinspired, facile, and versatile method for fabricating hydrogels with high stability in both air and water is reported. This method includes the creation of a bioinspired homogeneous fusion layer of a hydrophobic polymer and oil in the outermost surface layer of the hydrogel via a double-hydrophobic-coating produced through quenching. As a proof-of-concept, this method is applied to a polyacrylamide hydrogel without compromising its mechanical properties. The coated hydrogel exhibits strong resistance to both drying in air and swelling in multiple aqueous environments. Furthermore, the versatility of this method is demonstrated using different types of hydrogels and oils. Because this method is easy to apply and is not dependent on hydrogel surface chemistry, it can significantly broaden the scope of next-generation hydrogels for real-world applications in both wet and dry environments.