Search Results

Now showing 1 - 10 of 10
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
  • Item
    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study
    (Amsterdam : Elsevier, 2021) Zhao, Qi; Guo, Yuming; Ye, Tingting; Gasparrini, Antonio; Tong, Shilu; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Armstrong, Ben; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Dung, Do Van; Royé, Dominic; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Di Ruscio, Francesco; Sera, Francesco; Carrasco-Escobar, Gabriel; Kan, Haidong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J. K.; Katsouyanni, Klea; Hurtado Diaz, Magali; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; de Sousa Zanotti Stagliorio Coélho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Matus Correa, Patricia; Goodman, Patrick; Nascimento Saldiva, Paulo Hilario; Abrutzky, Rosana; Osorio, Samuel; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Bell, Michelle L.; Li, Shanshan
    Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities
    (Amsterdam : Elsevier, 2021) Chen, Kai; Breitner, Susanne; Wolf, Kathrin; Stafoggia, Massimo; Sera, Francesco; Vicedo-Cabrera, Ana M.; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Matus, Patricia; Valdés, Nicolás; Kan, Haidong; Jaakkola, Jouni J. K.; Ryti, Niilo R. I.; Huber, Veronika; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Nunes, Baltazar; Madureira, Joana; Holobâcă, Iulian Horia; Fratianni, Simona; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Milojevic, Ai; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Gasparrini, Antonio; Schneider, Alexandra
    Background Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure–response curve and evaluated the possibility of a threshold below which health is not affected. Findings Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32–1·50) increase in daily total mortality. The pooled exposure–response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure–response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants.
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.
  • Item
    A network-based microfoundation of Granovetter’s threshold model for social tipping
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Wiedermann, Marc; Smith, E. Keith; Heitzig, Jobst; Donges, Jonathan F.
    Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that – in contrast to its original formulation – the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis. © 2020, The Author(s).
  • Item
    The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Martinelli, Eleonora; Stenstad, Antonia; Pradhan, Prajal; Gabrysch, Sabine; Mishra, Abhijeet; Weindl, Isabelle; Le Mouël, Chantal; Rolinski, Susanne; Baumstark, Lavinia; Wang, Xiaoxi; Waid, Jillian L.; Lotze-Campen, Hermann; Popp, Alexander
    The nutrition transition transforms food systems globally and shapes public health and environmental change. Here we provide a global forward-looking assessment of a continued nutrition transition and its interlinked symptoms in respect to food consumption. These symptoms range from underweight and unbalanced diets to obesity, food waste and environmental pressure. We find that by 2050, 45% (39–52%) of the world population will be overweight and 16% (13–20%) obese, compared to 29% and 9% in 2010 respectively. The prevalence of underweight approximately halves but absolute numbers stagnate at 0.4–0.7 billion. Aligned, dietary composition shifts towards animal-source foods and empty calories, while the consumption of vegetables, fruits and nuts increases insufficiently. Population growth, ageing, increasing body mass and more wasteful consumption patterns are jointly pushing global food demand from 30 to 45 (43–47) Exajoules. Our comprehensive open dataset and model provides the interfaces necessary for integrated studies of global health, food systems, and environmental change. Achieving zero hunger, healthy diets, and a food demand compatible with environmental boundaries necessitates a coordinated redirection of the nutrition transition. Reducing household waste, animal-source foods, and overweight could synergistically address multiple symptoms at once, while eliminating underweight would not substantially increase food demand.
  • Item
    We need biosphere stewardship that protects carbon sinks and builds resilience
    (Washington, DC : National Acad. of Sciences, 2021) Rockström, Johan; Beringer, Tim; Hole, David; Griscom, Bronson; Mascia, Michael B.; Folke, Carl; Creutzig, Felix
    [no abstract available]
  • Item
    Reply to Bhowmik et al.: Democratic climate action and studying extreme climate risks are not in tension
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [no abstract available]
  • Item
    Impact of unseasonable flooding on women's food security and mental health in rural Sylhet, Bangladesh: a longitudinal observational study
    (Amsterdam : Elsevier, 2022) Gepp, Sophie; Waid, Jillian L; Brombierstäudl, Dagmar; Kader, Abdul; Müller-Hauser, Anna A; Wendt, Amanda S; Dame, Juliane; Gabrysch, Sabine
    Background Climate change will lead to more frequent and intensive flooding. In April, 2017, unseasonably early flooding led to the inundation of low-lying cropland before the rice harvest in northeastern Bangladesh. We describe coping strategies and quantify short-term and medium-term effects of flooding events on food security and depressive symptoms of women. Methods This observational study is part of the cluster-randomised Food and Agricultural Approaches to Reducing Malnutrition trial (FAARM; NCT02505711). Women self-reported flooding exposure on behalf of their households when surveyed (approximately 6 months after the event). Remote sensing analysis was used to detect the extent of the flooding. We collected data on household food security at baseline, depressive symptoms 4–5 months before the flooding, and coping strategies immediately after the event. We followed up on these outcome measurements for depressive symptoms and food security for up to 2·5 years after the flooding event. We used multilevel regression adjusting for intervention allocation and pre-flooding measures to quantify the flood's effect on household food security and women's mental health. Findings The FAARM trial included 2700 young women in 96 settlements in rural Sylhet, Bangladesh. 1335 (56%) of 2405 women reported that their household being greatly affected, with many losing a large part of their rice harvest. Borrowing money with interest was the most common coping strategy, with households paying back on average 1·5 times the borrowed amount. Greatly affected households had higher odds of food insecurity, with a decreasing effect with increasing time after the flood (odds ratio: 2·4 [p<0·0001] 0·5 years after; 1·6 [p<0·0001] 2·0 years after]; and 1·3 [p=0·012] 2·5 years after). Women in such households also had 1·45 times higher odds of depression (p=0·0001) 2·5 years after the flooding event. Interpretation The 2017 flooding event negatively affected food security and the mental health of women in rural Sylhet, Bangladesh, and few affected women received formal government support. To reduce the impact of future floods, livelihood adaptations and expansion of financial protection programmes are essential measures to pursue. Funding German Federal Ministry for Education and Research (Berlin, Germany) and UK Department for International Development (London, UK).
  • Item
    Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
    (London : BMJ Publ. Group, 2021) Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio, Samuel; Garcia, null; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J. K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, Haidong
    Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.