Search Results

Now showing 1 - 10 of 121
Loading...
Thumbnail Image
Item

Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder

2020, Hartmann, Wladick, Varytis, Paris, Gehring, Helge, Walter, Nicolai, Beutel, Fabian, Busch, Kurt, Pernice, Wolfram

Compact, on-chip spectrometers exploiting tailored disorder for broadband light scattering enable high-resolution signal analysis while maintaining a small device footprint. Due to multiple scattering events of light in the disordered medium, the effective path length of the device is significantly enhanced. Here, on-chip spectrometers are realized for visible and near-infrared wavelengths by combining an efficient broadband fiber-to-chip coupling approach with a scattering area in a broadband transparent silicon nitride waveguiding structure. Air holes etched into a structured silicon nitride slab terminated with multiple waveguides enable multipath light scattering in a diffusive regime. Spectral-to-spatial mapping is performed by determining the transmission matrix at the waveguide outputs, which is then used to reconstruct the probe signals. Direct comparison with theoretical analyses shows that such devices can be used for high-resolution spectroscopy from the visible up to the telecom wavelength regime. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

High-energy few-cycle pulses: post-compression techniques

2021, Nagy, Tamas, Simon, Peter, Veisz, Laszlo

Contemporary ultrafast science requires reliable sources of high-energy few-cycle light pulses. Currently two methods are capable of generating such pulses: post compression of short laser pulses and optical parametric chirped-pulse amplification (OPCPA). Here we give a comprehensive overview on the post-compression technology based on optical Kerr-effect or ionization, with particular emphasis on energy and power scaling. Relevant types of post compression techniques are discussed including free propagation in bulk materials, multiple-plate continuum generation, multi-pass cells, filaments, photonic-crystal fibers, hollow-core fibers and self-compression techniques. We provide a short theoretical overview of the physics as well as an in-depth description of existing experimental realizations of post compression, especially those that can provide few-cycle pulse duration with mJ-scale pulse energy. The achieved experimental performances of these methods are compared in terms of important figures of merit such as pulse energy, pulse duration, peak power and average power. We give some perspectives at the end to emphasize the expected future trends of this technology. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

Infrared and NMR Spectroscopic Fingerprints of the Asymmetric H7 + O3 Complex in Solution

2021, Kozari, Eve, Sigalov, Mark, Pines, Dina, Fingerhut, Benjamin P., Pines, Ehud

Infrared (IR) absorption in the 1000-3700 cm-1 range and 1 H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7 + O3, in acetonitrile. The core H7 + O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7 + O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7 + O3 in the OH stretch region, which reaffirms the assignment of the H7 + O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7 + O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7 + O3 structures may support proton transport within larger water solvates.

Loading...
Thumbnail Image
Item

Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances

2022, Heßler, Andreas, Wahl, Sophia, Kristensen, Philip Trøst, Wuttig, Matthias, Busch, Kurt, Taubner, Thomas

Phase-change materials (PCMs) allow for non-volatile resonance tuning of nanophotonic components. Upon switching, they offer a large dielectric contrast between their amorphous and crystalline phases. The recently introduced “plasmonic PCM” In3SbTe2 (IST) additionally features in its crystalline phase a sign change of its permittivity over a broad infrared spectral range. While optical resonance switching in unpatterned IST thin films has been investigated before, nanostructured IST antennas have not been studied, yet. Here, we present numerical and experimental investigations of nanostructured IST rod and disk antennas. By crystallizing the IST with microsecond laser pulses, we switched individual antennas from narrow dielectric to broad plasmonic resonances. For the rod antennas, we demonstrated a resonance shift of up to 1.2 µm (twice the resonance width), allowing on/off switching of plasmonic resonances with a contrast ratio of 2.7. With the disk antennas, we realized an increase of the resonance width by more than 800% from 0.24 µm to 1.98 µm while keeping the resonance wavelength constant. Further, we demonstrated intermediate switching states by tuning the crystallization depth within the resonators. Our work empowers future design concepts for nanophotonic applications like active spectral filters, tunable absorbers, and switchable flat optics.

Loading...
Thumbnail Image
Item

Tailored Disorder in Photonics: Learning from Nature

2021, Rothammer, Maximilian, Zollfrank, Cordt, Busch, Kurt, Freymann, Georg von

Disorder and photonics have long been seen as natural adversaries and designers of optical systems have often driven systems to perfection by minimizing deviations from the ideal design. Especially in the field of photonic crystals and metamaterials but also for optical circuits, disorder has been avoided as a nuisance for many years. However, starting from the very robust structural colors found in nature, scientists learn to analyze and tailor disorder to achieve functionalities beyond what is possible with perfectly ordered or ideal systems alone. This review article covers theoretical and materials aspects of tailored disorder as well as experimental results. Furthermore selected examples are highlighted in greater detail, for which the intentional use of disorder adds additional functionality or provides novel functionality impossible without disorder. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Needle beams: a review

2020, Grunwald R., Bock M.

Needle beams are highly attractive for applications which take advantage from a spatial and temporal localization of photons. High intensities, high resolution and extended depth of focus lead to fundamental advances in the optical system performance. Ultrashort, fringe-free, self-reconstructing nondiffracting pulses with undistorted temporal transfer are obtained by generating truncated Bessel beams under self-apodization conditions. Nondiffracting Talbot self-imaging of needle beam arrays enables to transfer near field information to the Fraunhofer zone. With addressable arrays of needle beams, reconfigurable time-wavefront sensors are built up. Moreover, spatial light modulators and flexible axicons are used to realize structured, highly localized wavepackets, accelerating beams and nondiffracting images. © 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

Regulatory impact of the C-terminal tail on charge transfer pathways in drosophila cryptochrome

2020, Richter, Martin, Fingerhut, Benjamin P.

Interconnected transcriptional and translational feedback loops are at the core of the molecular mechanism of the circadian clock. Such feedback loops are synchronized to external light entrainment by the blue light photoreceptor cryptochrome (CRY) that undergoes conformational changes upon light absorption by an unknown photoexcitation mechanism. Light-induced charge transfer (CT) reactions in Drosophila CRY (dCRY) are investigated by state-of-the-art simulations that reveal a complex, multi-redox site nature of CT dynamics on the microscopic level. The simulations consider redox-active chromophores of the tryptophan triad (Trp triad) and further account for pathways mediated by W314 and W422 residues proximate to the C-terminal tail (CTT), thus avoiding a pre-bias to specific W-mediated CT pathways. The conducted dissipative quantum dynamics simulations employ microscopically derived model Hamiltonians and display complex and ultrafast CT dynamics on the picosecond timescale, subtly balanced by the electrostatic environment of dCRY. In silicio point mutations provide a microscopic basis for rationalizing particular CT directionality and demonstrate the degree of electrostatic control realized by a discrete set of charged amino acid residues. The predicted participation of CT states in proximity to the CTT relates the directionality of CT reactions to the spatial vicinity of a linear interaction motif. The results stress the importance of CTT directional charge transfer in addition to charge transfer via the Trp triad and call for the use of full-length CRY models including the interactions of photolyase homology region (PHR) and CTT domains. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

2021, Deinhart, Victor, Kern, Lisa-Marie, Kirchhof, Jan N., Juergensen, Sabrina, Sturm, Joris, Krauss, Enno, Feichtner, Thorsten, Kovalchuk, Sviatoslav, Schneider, Michael, Engel, Dieter, Pfau, Bastian, Hecht, Bert, Bolotin, Kirill I., Reich, Stephanie, Höflich, Katja

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.

Loading...
Thumbnail Image
Item

Infrared emission bands and thermal effects for 440-nm-emitting GaN-based laser diodes

2020, Mao F., Hong J., Wang H., Chen Y., Jing C., Yang P., Tomm J.W., Chu J., Yue F.

Broad emission bands due to defects in (In,Ga,Al)N laser diodes operating at 440 nm are investigated using continuous-wave and pulsed currents. In addition to known yellow-green and short-wave infrared bands, defect emissions were observed even in the medium-wave infrared range. A separation from thermal radiation is possible. When using pulsed currents, a super-linearly increasing emission occurs at ∼1150 nm, which could be attributed to amplified spontaneous emission mainly due to the electroluminescence of deep defects in the optically active region. These results may be useful in interpreting the output power bottleneck of GaN-based lasers compared to mature GaAs-based lasers. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143802

Loading...
Thumbnail Image
Item

Gain and lasing from CdSe/CdS nanoplatelet stripe waveguides

2022, Belitsch, Martin, Dirin, Dmitry N., Kovalenko, Maksym V., Pichler, Kevin, Rotter, Stefan, Ghalgaoui, Ahmed, Ditlbacher, Harald, Hohenau, Andreas, Krenn, Joachim R.

Colloidal semiconducting nanocrystals are efficient, stable and spectrally tunable emitters, but achievable optical gain is often limited by fast nonradiative processes. These processes are strongly suppressed in slab-shaped nanocrystals (nanoplatelets), due to relaxed exciton Coulomb interaction. Here, we show that CdSe/CdS nanoplatelets can be engineered into (sub)microscopic stripe waveguides that achieve lasing without further components for feedback, i.e., just relying on the stripe end reflection. We find a remarkably high gain factor for the CdSe/CdS nanoplatelets of 1630 cm−1. In addition, by comparison with numerical simulations we assign a distinct emission peak broadening above laser threshold to emission pulse shortening. Our results illustrate the feasibility of geometrically simple monolithic microscale nanoplatelet lasers as an attractive option for a variety of photonic applications.