Search Results

Now showing 1 - 10 of 25
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    A new scenario framework for climate change research: The concept of shared socioeconomic pathways
    (Dordrecht [u.a.] : Springer, 2014) O'Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P.
    The new scenario framework for climate change research envisions combining pathways of future radiative forcing and their associated climate changes with alternative pathways of socioeconomic development in order to carry out research on climate change impacts, adaptation, and mitigation. Here we propose a conceptual framework for how to define and develop a set of Shared Socioeconomic Pathways (SSPs) for use within the scenario framework. We define SSPs as reference pathways describing plausible alternative trends in the evolution of society and ecosystems over a century timescale, in the absence of climate change or climate policies. We introduce the concept of a space of challenges to adaptation and to mitigation that should be spanned by the SSPs, and discuss how particular trends in social, economic, and environmental development could be combined to produce such outcomes. A comparison to the narratives from the scenarios developed in the Special Report on Emissions Scenarios (SRES) illustrates how a starting point for developing SSPs can be defined. We suggest initial development of a set of basic SSPs that could then be extended to meet more specific purposes, and envision a process of application of basic and extended SSPs that would be iterative and potentially lead to modification of the original SSPs themselves.
  • Item
    Adaptation strategy to hydrological impact of climate change strategie [Adaptace na hydrologické dopady změny klimatu]
    (Berlin : de Gruyter Open, 2010) Slámová, R.; Martínková, M.; Krysanova, V.
    In the context of discussed global climate change the emphasis is placed mainly on the adaptability of the water management methodology at present time. Therefore a questionnaire inquiry oriented to the perception of the climate change impact and current state of adaptation strategies implementation was carried out and evaluated. The research was realised among the water management experts in six large transboundary basins: Elbe, Rhine, Guadiana, Amudaria, Orange and Nile. The questionnaire was divided into six parts concerning for example: expected climate change impacts, adaptation measures, drivers for development of adaptation strategy, adaptation barriers etc. Responses were evaluated with rating and the dominant answers and lists of priority were established. Results were evaluated looking for overall conclusions in all or almost all regions, as well as conclusions for each region. The main benefit of the research lies in the evaluation based principally on the opinions of policy makers, stakeholders and water managers in the river basins not on the climate scenarios. The outcomes have proved understanding of the climate change impact issue over all six basins, only the approach to adaptation is partly different. The historical development of water management in the basin influences the perception as well.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Presentation of uncertainties on web platforms for climate change information
    (Amsterdam : Elsevier B.V., 2011) Reusser, D.E.; Wrobel, M.; Nocke, T.; Sterzel, T.; Förster, H.; Kropp, J.P.
    Adaptation to climate change is gaining attention and is very challenging because it requires action at a local scale in response to global problems. At the same time, spatial and temporal uncertainty about climate impacts and effects of adaptation projects is large. Data on climate impacts and adaptation is collected and presented in web-based platforms such as ci:grasp, which is unique in its structuredness and by explicitly linking adaptation projects to the addressed climate impacts. The challenge to find an adequate and readable representation of uncertainty in this context is large and research is just in the initial phase to provide solutions to the problem. Our goal is to present the structure required to address spatial and temporal uncertainty within ci:grasp. We compare existing concepts and representations for uncertainty communication with current practices on web-based platforms. From our review we derive an uncertainty framework for climate information going beyond what is currently present in the web. We make use of a multi-step approach in communicating the uncertainty and a typology of uncertainty distinguishing between epistemic, natural stochastic, and human reflexive uncertainty. While our suggestions are a step forward, much remains to be done.
  • Item
    Testing versus proving in climate impact research
    (Wadern : Schloss Dagstuhl, 2013) Ionescu, C.; Jansson, P.
    Higher-order properties arise naturally in some areas of climate impact research. For example, "vulnerability measures", crucial in assessing the vulnerability to climate change of various regions and entities, must fulfill certain conditions which are best expressed by quantification over all increasing functions of an appropriate type. This kind of property is notoriously difficult to test. However, for the measures used in practice, it is quite easy to encode the property as a dependent type and prove it correct. Moreover, in scientific programming, one is often interested in correctness "up to implication": The program would work as expected, say, if one would use real numbers instead of floating-point values. Such counterfactuals are impossible to test, but again, they can be easily encoded as types and proven. We show examples of such situations (encoded in Agda), encountered in actual vulnerability assessments.
  • Item
    Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands
    (Dordrecht : Springer, 2012) Brander, L.M.; Bräuer, I.; Gerdes, H.; Ghermandi, A.; Kuik, O.; Markandya, A.; Navrud, S.; Nunes, P.A.L.D.; Schaafsma, M.; Vos, H.; Wagtendonk, A.
    There is growing policy and academic interest in transferring ecosystem service values from existing valuation studies to other ecosystem sites at a large geographic scale. Despite the evident policy demand for this combined transfer and "scaling up" of values, an approach to value transfer that addresses the challenges inherent in assessing ecosystem changes at a national or regional level is not available. This paper proposes a methodology for scaling up ecosystem service values to estimate the welfare effects of ecosystem change at this larger geographical scale. The methodology is illustrated by applying it to value the impact of climate change on European wetlands for the period 2000-2050. The proposed methodology makes use of meta-analysis to produce a value function. The parameters of the value function include spatial variables on wetland size and abundance, GDP per capita, and population. A geographic information system is used to construct a database of wetland sites in the case study region with information on these spatial variables. Site-specific ecosystem service values are subsequently estimated using the meta-analytic value function. The proposed method is shown to enable the adjustment of transferred values to reflect variation in important spatial variables and to account for changes in the stock of ecosystems.
  • Item
    Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model
    (Amsterdam [u.a.] : Elsevier, 2011) Klein, D.; Bauer, N.; Bodirsky, B.; Dietrich, J.P.; Popp, A.
    This study analyses the impact of techno-economic performance of the BIGCC process and the effect of different biomass feedstocks on the technology's long term deployment in climate change mitigation scenarios. As the BIGCC technology demands high amounts of biomass raw material it also affects the land-use sector and is dependent on conditions and constraints on the land-use side. To represent the interaction of biomass demand and supply side the global energy-economy-climate model ReMIND is linked to the global land-use model MAgPIE. The link integrates biomass demand and price as well as emission prices and land-use emissions. Results indicate that BIGCC with CCS could serve as an important mitigation option and that it could even be the main bioenergy conversion technology sharing 33% of overall mitigation in 2100. The contribution of BIGCC technology to long-term climate change mitigation is much higher if grass is used as fuel instead of wood, provided that the grass-based process is highly efficient. The capture rate has to significantly exceed 60 % otherwise the technology is not applied. The overall primary energy consumption of biomass reacts much more sensitive to price changes of the biomass than to technoeconomic performance of the BIGCC process. As biomass is mainly used with CCS technologies high amounts of carbon are captured ranging from 130 GtC to 240 GtC (cumulated from 2005-2100) in different scenarios.
  • Item
    Future changes in extratropical storm tracks and baroclinicity under climate change
    (Bristol : IOP, 2014) Lehmann, J.; Coumou, D.; Frieler, K.; Eliseev, A.V.; Levermann, A.
    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions.
  • Item
    Sozialwissenschaftliche Klimaforschung: Mehr Visionen wagen!
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2013) Gerten, D.
    [No abstract available]