Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Raman imaging to study structural and chemical features of the dentin enamel junction

2015, Alebrahim, M.A., Krafft, C., Popp, J., El-Khateeb, Mohammad Y.

The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.

Loading...
Thumbnail Image
Item

Superconductivity in multi-phase Mg-B-O compounds

2012, Prikhna, T., Gawalek, W., Eisterer, M., Weber, H.W., Noudem, J., Sokolovsky, V., Chaud, X., Moshchil, V., Karpets, M., Kovylaev, V., Borimskiy, A., Tkach, V., Kozyrev, A., Kuznietsov, R., Dellith, J., Shmidt, C., Basyuk, T., Litzkendorf, D., Karau, F., Dittrich, U., Tomsic, M.

Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically).

Loading...
Thumbnail Image
Item

Single-electron transitions in one-dimensional native nanostructures

2014, Reiche, M., Kittler, M., Schmelz, M., Stolz, R., Pippel, E., Uebensee, H., Kermann, M., Ortlepp, T.

Low-temperature measurements proved the existence of a two-dimensional electron gas at defined dislocation arrays in silicon. As a consequence, single-electron transitions (Coulomb blockades) are observed. It is shown that the high strain at dislocation cores modifies the band structure and results in the formation of quantum wells along dislocation lines. This causes quantization of energy levels inducing the formation of Coulomb blockades.

Loading...
Thumbnail Image
Item

Measuring conditions for second order X-ray Bragg-spectrometry

2014, Dellith, J., Scheffel, A., Wendt, M.

The KL2,3 (α)1,2-lines of 19K, the L3M4,5 (α)1,2-lines of 48Cd, and the M5N6,7 (α)1,2-lines of 92U are lines of comparable energy in the region of approximately 3 keV. In none of these cases were we able to resolve the three doublets when recording the spectra in first order Bragg spectrometry using a PET crystal as the dispersing element. For the purpose of enhancing the resolving power of the spectrometer, the three α spectra were recorded in second order reflection, thereby transferring the lines into another spectral region dominated by X-ray quanta of half the energy. In order to achieve high net peak intensities as well as a high peak-to-background ratio and, consequently, a high level of detection capability, the discriminator settings should be optimized quite carefully. In this manner, we were able to resolve the three α doublets and estimate α2/α1 intensity ratios. Inexplicably, current monographs, e.g., by Goldstein et al, do not contain any indications about the rational use of high order spectrometry. Only a few rather old monographs contain some hints in this regard.

Loading...
Thumbnail Image
Item

Cryogenic time-domain multiplexer based on SQUID arrays and superconducting/normal conducting switches

2014, Beev, N., Kiviranta, M., Van Der Kuur, J., Bruijn, M., Brandel, O., Linzen, S., Fritzsch, L., Ahoranta, J., Penttilä, J., Roschier, L.

We have demonstrated the operation of a 12-channel Beyer-style SQUID-based time domain multiplexer. It was manufactured using a fabrication process that is cross-compatible between VTT and IPHT-Jena. The multiplexer consists of twelve 12-SQUID series arrays, each shunted by a Zappe-style interferometer array acting as a flux-controlled superconducting/normal conducting switch. By keeping all switches but one in the superconducting state, it is possible to select one active readout channel at a time. A flux feedback coil common to all SQUID arrays allows realization of a flux-locked loop. We present characteristics of the multiplexer and measurement data from experiments with a 25-pixel X-ray calorimeter array operated at T < 100 mK in a dilution refrigerator.

Loading...
Thumbnail Image
Item

Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell

2015, Thiele, Matthias, Götz, Isabell, Trautmann, Steffen, Müller, Robert, Csáki, Andrea, Henkel, Thomas, Fritzsche, Wolfgang

Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.