Search Results

Now showing 1 - 10 of 358
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.
  • Item
    Conformations of a Long Polymer in a Melt of Shorter Chains: Generalizations of the Flory Theorem
    (Washington, DC : ACS, 2015) Lang, Michael; Rubinstein, Michael; Sommer, Jens-Uwe
    Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P–0.18 with decreasing degree of polymerization P of melt chains in the range of 1 < P < N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P–0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.
  • Item
    Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber
    (Washington, DC : Soc., 2015) Faez, Sanli; Lahini, Yoav; Weidlich, Stefan; Garmann, Rees F.; Wondraczek, Katrin; Zeisberger, Matthias; Schmidt, Markus A.; Orrit, Michel; Manoharan, Vinothan N.
    High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.
  • Item
    Crystal structure of bis{μ2-[(2-iminocyclopentylidene)methylidene]azanido-κ2 N:N'}bis[(η5-pentamethylcyclopentadienyl)zirconium(IV)] hexane monosolvate
    (Chester : International Union of Crystallography, 2015) Becker, Lisanne; Spannenberg, Anke; Arndt, Perdita; Rosenthal, Uwe
    The title compound, [Zr2(C10H15)4(C6H6N2)2]·C6H14, was obtained by the stoichiometric reaction of adipo­nitrile with [Zr(C10H15)2([eta]2-Me3SiC2SiMe3)]. Intra­molecular nitrile-nitrile couplings and deprotonation of the substrate produced the (1-imino-2-enimino)­cyclo­pentane ligand, which functions as a five-membered bridge between the two metal atoms. The ZrIV atom exhibits a distorted tetra­hedral coordination sphere defined by two penta­methyl­cyclo­penta­dienyl ligands, by the imino unit of one (1-imino-2-enimino)­cyclo­pentane and by the enimino unit of the second (1-imino-2-enimino)­cyclo­pentane. The cyclo­pentane ring of the ligand shows an envelope conformation. The asymmetric unit contains one half of the complex and one half of the hexane solvent mol­ecule, both being completed by the application of inversion symmetry. One of the penta­methyl­cyclo­penta­dienyl ligands is disordered over two sets of sites with a refined occupancy ratio of 0.8111 (3):0.189 (3). In the crystal, the complex mol­ecules are packed into rods extending along [100], with the solvent mol­ecules located in between. The rods are arranged in a distorted hexa­gonal packing.
  • Item
    Crystal structure of (E)-dodec-2-enoic acid
    (Chester : International Union of Crystallography, 2015) Sonneck, Marcel; Peppel, Tim; Spannenberg, Anke; Wohlrab, Sebastian
    The crystal structure of (E)-dodec-2-enoic acid, C12H22O2, an [alpha],[beta]-unsaturated carb­oxy­lic acid with a melting point (295 K) near room temperature, is characterized by carb­oxy­lic acid inversion dimers linked by pairs of O-H...O hydrogen bonds. The carb­oxy­lic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid mol­ecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydro­carbon chain adopt a nearly fully staggered conformation [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°].
  • Item
    Crystal structure of (E)-undec-2-enoic acid
    (Chester : International Union of Crystallography, 2015) Sonneck, Marcel; Peppel, Tim; Spannenberg, Anke; Wohlrab, Sebastian
    In the mol­ecule of the title low-melting [alpha],[beta]-unsaturated carb­oxy­lic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related mol­ecules are linked by pairs of O-H...O hydrogen bonds into dimers, forming layers parallel to the (041) plane.
  • Item
    Crystal structure of di-n-but­yl­bis­([eta]5-penta­methyl­cyclo­penta­dien­yl)hafnium(IV)
    (Chester : International Union of Crystallography, 2015) Arndt, Perdita; Schubert,Kathleen; Burlakov, Vladimir V.; Spannenberg, Anke; Rosenthal, Uwe
    The crystal structure of the title compound, [Hf(C10H15)2(C4H9)2], reveals two independent mol­ecules in the asymmetric unit. The diffraction experiment was performed with a racemically twinned crystal showing a 0.529 (5):0.471 (5) component ratio. Each HfIV atom is coordinated by two penta­methyl­cyclo­penta­dienyl and two n-butyl ligands in a distorted tetra­hedral geometry, with the cyclo­penta­dienyl rings inclined to one another by 45.11 (15) and 45.37 (16)°. In contrast to the isostructural di(n-butyl)bis([eta]5-penta­methyl­cyclo­penta­dien­yl)zirconium(IV) complex with a noticeable difference in the Zr-butyl bonding, the Hf-Cbut­yl bond lengths differ from each other by no more than 0.039 (3) Å.
  • Item
    Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
    (Amsterdam [u.a.] : Elsevier Science, 2015) Stoica, Mihai; Ramasamy, Parthiban; Kaban, Ivan; Scudino, Sergio; Nicoara, Mircea; Vaughan, Gavin B.M.; Wright, Jonathan; Kumar, Ravi; Eckert, Jürgen
    Fully amorphous rods with diameters up to 2 mm diameter were obtained upon 0.5 at.% Cu addition to the Fe36Co36B19.2Si4.8Nb4 bulk metallic glass. The Cu-added glass shows a very good thermal stability but, in comparison with the Cu-free base alloy, the entire crystallization behavior is drastically changed. Upon heating, the glassy (Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 samples show two glass transitions-like events, separated by an interval of more than 100 K, in between which a bcc-(Fe,Co) solid solution is formed. The soft magnetic properties are preserved upon Cu-addition and the samples show a saturation magnetization of 1.1 T combined with less than 2 A/m coercivity. The relaxation behavior prior to crystallization, as well as the crystallization behavior, were studied by time-resolved X-ray diffraction using synchrotron radiation. It was found that both glassy alloys behave similar at temperatures below the glass transition. Irreversible structural transformations take place when approaching the glass transition and in the supercooled liquid region.
  • Item
    Raman imaging to study structural and chemical features of the dentin enamel junction
    (London [u.a.] : Institute of Physics, 2015) Alebrahim, M.A.; Krafft, C.; Popp, J.; El-Khateeb, Mohammad Y.
    The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.