Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Raman imaging to study structural and chemical features of the dentin enamel junction

2015, Alebrahim, M.A., Krafft, C., Popp, J., El-Khateeb, Mohammad Y.

The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.

Loading...
Thumbnail Image
Item

Quantifying texture evolution during hot rolling of AZ31 Twin Roll Cast strip

2015, Gorelova, S., Schaeben, H., Skrotzki, Werner, Oertel, Carl-Georg

Multi-pass rolling experiments with an AZ31 Twin Roll Cast (TRC) alloy were performed on an industrial scaled four-high rolling mill. Within the rolling with an intermediate annealing the evolution of texture was investigated. To quantify the extent of preferred crystallographic orientation experimental X-ray pole figures were measured after different process steps and analyzed using the free and open Matlab® toolbox MTEX for texture analysis. The development of the fiber texture was observed and analyzed in dependence on rolling conditions. In the initial state the specimen exhibits a texture composed of a weak basal texture and a cast texture with {0001}-planes oriented across the rolling direction. During the following rolling process a fiber texture was developed. The expected strength increment of the fiber texture was quantitatively confirmed in terms of volume portions of the orientation density function around the fiber and in terms of the canonical parameters of fitted pseudo Bingham distributions. On the results of this work a model for prediction of the texture evolution during the strip rolling of magnesium in the examined parameter range was developed.