Search Results

Now showing 1 - 4 of 4
  • Item
    Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
    (Weinheim : Wiley-VCH, 2015) Alexander Schmidt, Markus; Argyros, Alexander; Sorin, Fabien
    The field of hybrid optical fibers is one of the most active research areas in current fiber optics and has the vision of integrating sophisticated materials inside fibers, which are not traditionally used in fiber optics. Novel in-fiber devices with unique properties have been developed, opening up new directions for fiber optics in fields of critical interest in modern research, such as biophotonics, environmental science, optoelectronics, metamaterials, remote sensing, medicine, or quantum optics. Here the recent progress in the field of hybrid optical fibers is reviewed from an application perspective, focusing on fiber-integrated devices enabled by including novel materials inside polymer and glass fibers. The topics discussed range from nanowire-based plasmonics and hyperlenses, to integrated semiconductor devices such as optoelectronic detectors, and intense light generation unlocked by highly nonlinear hybrid waveguides.
  • Item
    Towards multiple readout application of plasmonic arrays
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2011) Cialla, D.; Weber, K.; Böhme, R.; Hübner, U.; Schneidewind, H.; Zeisberger, M.; Mattheis, R.; Möller, R.; Popp, J.
    In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.
  • Item
    Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
    (London : Nature Publishing Group, 2014) Huang, Y.; Fang, Y.; Zhang, Z.; Zhu, L.; Sun, M.
    Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.
  • Item
    A gold-nanotip optical fiber for plasmon-enhanced near-field detection
    (New York, NY : American Inst. of Physics, 2013) Uebel, P.; Bauerschmidt, S.T.; Schmidt, M.A.; Russell, P.St.J.
    A wet-chemical etching and mechanical cleaving technique is used to fabricate gold nanotips attached to tapered optical fibers. Localized surface plasmon resonances (tunable from 500 to 850 nm by varying the tip dimensions) are excited at the tip, and the signal is transmitted via the fiber to an optical analyzer, making the device a plasmon-enhanced near-field probe. A simple cavity model is used to explain the resonances observed in numerical simulations.