Search Results

Now showing 1 - 10 of 15
  • Item
    Solar and lunar tides in noctilucent clouds as determined by ground-based lidar
    (Göttingen : Copernicus GmbH, 2018) Fiedler, J.; Baumgarten, G.
    Noctilucent clouds (NLCs) occur during summer from midlatitudes to high latitudes. They consist of nanometer-sized ice particles in an altitude range from 80 to 90 km and are sensitive to ambient temperature and water vapor content, which makes them a suitable tracer for variability on all timescales. The data set acquired by the ALOMAR Rayleigh-Mie-Raman (RMR) lidar covers 21 years and is investigated regarding tidal signatures in NLCs. For the first time solar and lunar tidal parameters in NLCs were determined simultaneously from the same data. Several NLC parameters are subject to persistent mean variations throughout the solar day as well as the lunar day. Variations with lunar time are generally smaller compared to variations with solar time. NLC occurrence frequency shows the most robust imprint of the lunar semidiurnal tide. Its amplitude is about 50 % of the solar semidiurnal tide, which is surprisingly large. Phase progressions of NLC occurrence frequency indicate upward propagating solar tides. Below 84 km altitude the corresponding vertical wavelengths are between 20 and 30 km. For the lunar semidiurnal tide phase progressions vary symmetrically with respect to the maximum of the NLC layer. © Author(s) 2018.
  • Item
    Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
    (Göttingen : Copernicus GmbH, 2018) Chau, J.L.; McKay, D.; Vierinen, J.P.; La Hoz, C.; Ulich, T.; Lehtinen, M.; Latteck, R.
    Polar mesospheric summer echoes (PMSEs) have been long associated with noctilucent clouds (NLCs). For large ice particles sizes and relatively high ice densities, PMSEs at 3m Bragg wavelengths are known to be good tracers of the atmospheric wind dynamics and to be highly correlated with NLC occurrence. Combining the Middle Atmosphere ALOMAR Radar System (MAARSY) and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA), i.e., monostatic and bistatic observations, we show for the first time direct evidence of limited-volume PMSE structures drifting more than 90 km almost unchanged. These structures are shown to have horizontal widths of 5-15 km and are separated by 20-60 km, consistent with structures due to atmospheric waves previously observed in NLCs from the ground and from space. Given the lower sensitivity of KAIRA, the observed features are attributed to echoes from regions with high Schmidt numbers that provide a large radar cross section. The bistatic geometry allows us to determine an upper value for the angular sensitivity of PMSEs at meter scales. We find no evidence for strong aspect sensitivity for PMSEs, which is consistent with recent observations using radar imaging approaches. Our results indicate that multi-static allsky interferometric radar observations of PMSEs could be a powerful tool for studying mesospheric wind fields within large geographic areas. © Author(s) 2018.
  • Item
    Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
    (Göttingen : Copernicus GmbH, 2018) Conte, J.F.; Chau, J.L.; Laskar, F.I.; Stober, G.; Schmidt, H.; Brown, P.
    We present a study of the semidiurnal solar tide (S2) during the fall and spring transition times in the Northern Hemisphere. The tides have been obtained from wind measurements provided by three meteor radars located at Andenes (69° N, 16° E), Juliusruh (54° N, 13° E) and Tavistock (42° N, 81° W). During the fall, S2 is characterized by a sudden and pronounced decrease occurring every year and at all height levels. The spring transition also shows a decrease in S2, but not sudden and that ascends from lower to higher altitudes during an interval of ∼ 15 to 40 days. To assess contributions of different semidiurnal tidal components, we have examined a 20-year free-run simulation by the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA). We found that the differences exhibited by the S2 tide between equinox times are mainly due to distinct behaviors of the migrating semidiurnal and the non-migrating westward-propagating wave number 1 tidal components (SW2 and SW1, respectively). Specifically, during the fall both SW2 and SW1 decrease, while during the springtime SW2 decreases but SW1 remains approximately constant or decreases only slightly. The decrease shown by SW1 during the fall occurs later than that of SW2 and S2, which indicates that the behavior of S2 is mainly driven by the migrating component. Nonetheless, the influence of SW1 is necessary to explain the behavior of S2 during the spring. In addition, a strong shift in the phase of S2 (of SW2 in the simulations) is also observed during the fall. Our meteor radar wind measurements show more gravity wave activity in the fall than during the spring, which might be indicating that the fall decrease is partly due to interactions between SW2 and gravity waves. © 2018 Author(s).
  • Item
    The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): Rationale and experimental protocol for CMIP6
    (Göttingen : Copernicus GmbH, 2018) Keller, D.P.; Lenton, A.; Scott, V.; Vaughan, N.E.; Bauer, N.; Ji, D.; Jones, C.D.; Kravitz, B.; Muri, H.; Zickfeld, K.
    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2gC, and all emission scenarios that do not exceed 1.5gC warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.
  • Item
    A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0
    (Göttingen : Copernicus GmbH, 2018) Tittensor, D.P.; Eddy, T.D.; Lotze, H.K.; Galbraith, E.D.; Cheung, W.; Barange, M.; Blanchard, J.L.; Bopp, L.; Bryndum-Buchholz, A.; Büchner, M.; Bulman, C.; Carozza, D.A.; Christensen, V.; Coll, M.; Dunne, J.P.; Fernandes, J.A.; Fulton, E.A.; Hobday, A.J.; Huber, V.; Jennings, S.; Jones, M.; Lehodey, P.; Link, J.S.; MacKinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Schewe, J.; Shin, Y.-J.; Silva, T.; Stock, C.A.; Steenbeek, J.; Underwood, P.J.; Volkholz, J.; Watson, J.R.; Walker, N.D.
    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within-and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium-and long-term projections of marine ecosystems.
  • Item
    The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: Validation and parameter optimization
    (Göttingen : Copernicus GmbH, 2018) Totz, S.; Eliseev, A.V.; Petri, S.; Flechsig, M.; Caesar, L.; Petoukhov, V.; Coumou, D.
    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.

    Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.

    We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.

    With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.

    The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
  • Item
    Aerial and surface rivers: Downwind impacts on water availability from land use changes in Amazonia
    (Göttingen : Copernicus GmbH, 2018) Weng, W.; Luedeke, M.; Zemp, D.; Lakes, T.; Kropp, J.
    The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5–12ĝ€% and runoff by 19–50ĝ€% according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land–water management.
  • Item
    Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile
    (Göttingen : Copernicus GmbH, 2018) Liersch, S.; Tecklenburg, J.; Rust, H.; Dobler, A.; Fischer, M.; Kruschke, T.; Koch, H.; Hattermann, F.F.
    Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
  • Item
    Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns
    (Göttingen : Copernicus GmbH, 2018) Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; Hanasaki, N.; Wada, Y.
    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
  • Item
    Retrieving horizontally resolved wind fields using multi-static meteor radar observations
    (Göttingen : Copernicus GmbH, 2018) Stober, G.; Chau, J.L.; Vierinen, J.; Jacobi, C.; Wilhelm, S.
    Recently, the MMARIA (Multi-static, Multi-frequency Agile Radar for Investigations of the Atmosphere) concept of a multi-static VHF meteor radar network to derive horizontally resolved wind fields in the mesosphere-lower thermosphere was introduced. Here we present preliminary results of the MMARIA network above Eastern Germany using two transmitters located at Juliusruh and Collm, and five receiving links: two monostatic and three multi-static. The observations are complemented during a one-week campaign, with a couple of addition continuous-wave coded transmitters, making a total of seven multi-static links. In order to access the kinematic properties of non-homogenous wind fields, we developed a wind retrieval algorithm that applies regularization to determine the non-linear wind field in the altitude range of 82-98 km. The potential of such observations and the new retrieval to investigate gravity waves with horizontal scales between 50-200 km is presented and discussed. In particular, it is demonstrated that horizonal wavelength spectra of gravity waves can be obtained from the new data set. © Author(s) 2018.