Search Results

Now showing 1 - 10 of 10
  • Item
    RES-Q-Trace: A Mobile CEAS-Based Demonstrator for Multi-Component Trace Gas Detection in the MIR
    (Basel : MDPI, 2018-6-27) Lang, Norbert; Macherius, Uwe; Zimmermann, Henrik; Glitsch, Sven; Wiese, Mathias; Röpcke, Jürgen; van Helden, Jean-Pierre H.
    Sensitive trace gas detection plays an important role in current challenges occurring in areas such as industrial process control and environmental monitoring. In particular, for medical breath analysis and for the detection of illegal substances, e.g., drugs and explosives, a selective and sensitive detection of trace gases in real-time is required. We report on a compact and transportable multi-component system (RES-Q-Trace) for molecular trace gas detection based on cavity-enhanced techniques in the mid-infrared (MIR). The RES-Q-Trace system can operate four independent continuous wave quantum or interband cascade lasers each combined with an optical cavity. Twice the method of off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) was used, twice the method of optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS), respectively. Multi-functional software has been implemented (i) for the general system control; (ii) to drive the four different laser sources and (iii) to analyze the detector signals for concentration determination of several molecular species. For the validation of the versatility and the performance of the RES-Q-Trace instrument the species NO, N2O, CH4, C2H4 and C3H6O, with relevance in the fields of breath gas analysis and the detection of explosives have been monitored in the MIR with detection limits at atmospheric pressure in the ppb and ppt range.
  • Item
    Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses
    (Berlin : Nature Publishing, 2018) Fatobene Ando, Mariana; Benzine, Omar; Pan, Zhiwen; Garden, Jean-Luc; Wondraczek, Katrin; Grimm, Stephan; Schuster, Kay; Wondraczek, Lothar
    In binary aluminosilicate liquids and glasses, heterogeneity on intermediate length scale is a crucial factor for optical fiber performance, determining the lower limit of optical attenuation and Rayleigh scattering, but also clustering and precipitation of optically active dopants, for example, in the fabrication of high-power laser gain media. Here, we consider the low-frequency vibrational modes of such materials for assessing structural heterogeneity on molecular scale. We determine the vibrational density of states VDoS g(ω) using low-temperature heat capacity data. From correlation with low-frequency Raman spectroscopy, we obtain the Raman coupling coefficient. Both experiments allow for the extraction of the average dynamic correlation length as a function of alumina content. We find that this value decreases from about 3.9 nm to 3.3 nm when mildly increasing the alumina content from zero (vitreous silica) to 7 mol%. At the same time, the average inter-particle distance increases slightly due to the presence of oxygen tricluster species. In accordance with Loewensteinian dynamics, this proves that mild alumina doping increases structural homogeneity on molecular scale.
  • Item
    Experiments on MEMS Integration in 0.25 ÎĽm CMOS Process
    (Basel : MDPI, 2018) Michalik, Piotr; Fernández, Daniel; Wietstruck, Matthias; Kaynak, Mehmet; Madrenas, Jordi
    In this paper, we share our practical experience gained during the development of CMOS-MEMS (Complementary Metal-Oxide Semiconductor Micro Electro Mechanical Systems) devices in IHP SG25 technology. The experimental prototyping process is illustrated with examples of three CMOS-MEMS chips and starts from rough process exploration and characterization, followed by the definition of the useful MEMS design space to finally reach CMOS-MEMS devices with inertial mass up to 4.3 ÎĽg and resonance frequency down to 4.35 kHz. Furthermore, the presented design techniques help to avoid several structural and reliability issues such as layer delamination, device stiction, passivation fracture or device cracking due to stress.
  • Item
    Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings
    (London : Nature Publishing Group, 2018) Sablowski, J.; Linnemann, J.; Hempel, S.; Hoffmann, V.; Unz, S.; Beckmann, M.; Giebeler, L.
    Superhierarchically rough films are rapidly synthesised on metal substrates via electrochemically triggered self-assembly of meso/macroporous-structured metal-organic framework (MOF) crystals. These coatings are applied to immobilise a functional oil with low surface energy to provide stable coatings repellent to a wide range of hydrophobic as well as hydrophilic fluids. Such omniphobic surfaces are highly interesting for several applications such as anti-fouling, anti-icing, and dropwise condensation, and become easily scalable with the presented bottom-up fabrication approach. As investigated by environmental scanning electron microscopy (ESEM), the presented perfluorinated oil-infused Cu-BTC coating constitutes of a flat liquid-covered surface with protruding edges of octahedral superstructured MOF crystals. Water and non-polar diiodomethane droplets form considerably high contact angles and even low-surface-tension fluids, e.g. acetone, form droplets on the infused coating. The repellent properties towards the test fluids do not change upon extended water spraying in contrast to oil-infused porous copper oxide or native copper surfaces. It is discussed in detail, how the presented electrodeposited MOF films grow and provide a proficient surface morphology to stabilise the functional oil film due to hemiwicking.
  • Item
    Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T-1R based HfO2 RRAM devices
    (London : Nature Publishing Group, 2018) Grossi, A.; Perez, E.; Zambelli, C.; Olivo, P.; Miranda, E.; Roelofs, R.; Woodruff, J.; Raisanen, P.; Li, W.; Givens, M.; Costina, I.; Schubert, M.A.; Wenger, C.
    The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells’ behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.
  • Item
    Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
    (Basel : MDPI, 2018) Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Kirchhoff, Johanna; Tannert, Astrid; Neugebauer, Ute; Samek, Ota; Zemánek, Pavel
    Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.
  • Item
    Electrical and optical properties of epitaxial binary and ternary GeTe-Sb2Te3 alloys
    (London : Nature Publishing, 2018) Boschker, Jos E.; LĂĽ, Xiang; Bragaglia, Valeria; Wang,Ruining; Grahn, Holger T.; Calarco, Raffaella
    Phase change materials such as pseudobinary GeTe-Sb2Te3 (GST) alloys are an essential part of existing and emerging technologies. Here, we investigate the electrical and optical properties of epitaxial phase change materials: α-GeTe, Ge2Sb2Te5 (GST225), and Sb2Te3. Temperature-dependent Hall measurements reveal a reduction of the hole concentration with increasing temperature in Sb2Te3 that is attributed to lattice expansion, resulting in a non-linear increase of the resistivity that is also observed in GST225. Fourier transform infrared spectroscopy at room temperature demonstrates the presence of electronic states within the energy gap for α-GeTe and GST225. We conclude that these electronic states are due to vacancy clusters inside these two materials. The obtained results shed new light on the fundamental properties of phase change materials such as the high dielectric constant and persistent photoconductivity and have the potential to be included in device simulations.
  • Item
    High-performance SiGe HBTs for next generation BiCMOS technology
    (Bristol : IOP Publ., 2018) RĂĽcker, Holger; Heinemann, Bernd
    This paper addresses fabrication aspects of SiGe heterojunction bipolar transistors which record high-speed performance. We previously reported fT values of 505 GHz, fMAX values of 720 GHz, and ring oscillator gate delays of 1.34 ps for these transistors. The impact of critical process steps on radio frequency performance is discussed. This includes millisecond annealing for enhanced dopant activation and optimization of the epitaxial growth process of the base layer. It is demonstrated that the use of a disilane precursor instead of silane can result in reduced base resistance and favorable device scalability.
  • Item
    Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure
    (London : Nature Publishing, 2018) Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim
    We study the effects of annealing on (Ga0.64,In0.36) (N0.045,As0.955) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.
  • Item
    UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection
    (Basel : MDPI, 2018) Nissen, Mona; Doherty, Brenda; Hamperl, J.; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.
    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.