Search Results

Now showing 1 - 10 of 55
Loading...
Thumbnail Image
Item

Nitrous oxide emissions from winter oilseed rape cultivation

2017, Ruser, Reiner, Fuß, Roland, Andres, Monique, Hegewald, Hannes, Kesenheimer, Katharina, Köbke, Sarah, Räbiger, Thomas, Quinones, Teresa Suarez, Augustin, Jürgen, Christen, Olaf, Dittert, Klaus, Kage, Henning, Lewandowski, Iris, Prochnow, Annette, Stichnothe, Heinz, Flessa, Heinz

Winter oilseed rape (Brassica napus L., WOSR) is the major oil crop cultivated in Europe. Rapeseed oil is predominantly used for production of biodiesel. The framework of the European Renewable Energy Directive requires that use of biofuels achieves GHG savings of at least 50% compared to use of fossil fuel starting in 2018. However, N2O field emissions are estimated using emission factors that are not specific for the crop and associated with strong uncertainty. N2O field emissions are controlled by N fertilization and dominate the GHG balance of WOSR cropping due to the high global warming potential of N2O. Thus, field experiments were conducted to increase the data basis and subsequently derive a new WOSR-specific emission factor. N2O emissions and crop yields were monitored for three years over a range of N fertilization intensities at five study sites representative of German WOSR production. N2O fluxes exhibited the typical high spatial and temporal variability in dependence on soil texture, weather and nitrogen availability. The annual N2O emissions ranged between 0.24 kg and 5.48 kg N2O-N ha−1 a−1. N fertilization increased N2O emissions, particularly with the highest N treatment (240 kg N ha−1). Oil yield increased up to a fertilizer amount of 120 kg N ha−1, higher N-doses increased grain yield but decreased oil concentrations in the seeds. Consequently oil yield remained constant at higher N fertilization. Since, yield-related emission also increased exponentially with N surpluses, there is potential for reduction of the N fertilizer rate, which offers perspectives for the mitigation of GHG emissions. Our measurements double the published data basis of annual N2O flux measurements in WOSR. Based on this extended dataset we modeled the relationship between N2O emissions and fertilizer N input using an exponential model. The corresponding new N2O emission factor was 0.6% of applied fertilizer N for a common N fertilizer amount under best management practice in WOSR production (200 kg N ha−1 a−1). This factor is substantially lower than the linear IPCC Tier 1 factor (EF1) of 1.0% and other models that have been proposed. © 2017

Loading...
Thumbnail Image
Item

Expressing stemflow commensurate with its ecohydrological importance

2018, Carlyle-Moses, Darryl E., Iida, Shin'ichi, Germer, Sonja, Llorens, Pilar, Michalzik, Beate, Nanko, Kazuki, Tischer, Alexander, Levia, Delphis F.

Despite some progress, the importance of stemflow remains obscured partly due to computations emphasizing canopy interception loss. We advocate for two metrics—the stand-scale funneling ratio and the stand-scale infiltration funneling ratio—to more accurately portray stemflow inputs and increase comparability across ecosystems. These metrics yield per unit area stemflow inputs orders of magnitude greater than what would have been delivered by throughfall or precipitation alone. We recommend that future studies employ these stand-scale funnelling metrics to express stemflow commensurate with its ecohydrological importance and better conceptualize the role of stemflow in plant-soil interactions, permitting advances in critical zone science. © 2018 The Authors

Loading...
Thumbnail Image
Item

Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors

2018, Maus, I., Rumming, M., Bergmann, I., Heeg, K., Pohl, M., Nettmann, E., Jaenicke, S., Blom, J., Pühler, A., Schlüter, A., Sczyrba, A., Klocke, M.

Background: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. Results: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. Conclusions: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.

Loading...
Thumbnail Image
Item

Evaluation of different sensing approaches concerning to nondestructive estimation of leaf area index (LAI) for winter wheat

2017, Tavakoli, H., Mohtasebi, S.S., Alimardani, R., Gebbers, R.

Different approaches of non-destructive estimation of the LAI in winter wheat were compared. Plant height had weak relation with the LAI, while estimated biomass showed high logarithmic relationship (R2=0.839). NDRE and REIP were logarithmically well related to the LAI (R2=0.726 and 0.779 respectively). Saturation effect of NDRE and REIP was less than NDVI. Some RGB-based indices also showed good potential to estimate the LAI. Among the indices, Gm, GMB, RMB, and NRMB were better related to the LAI. The results indicated that digital cameras can be used as an affordable and simple approach for assessment of the LAI of crops.

Loading...
Thumbnail Image
Item

DNA and RNA extraction and quantitative real-time PCR-based assays for biogas biocenoses in an interlaboratory comparison

2016, Lebuhn, Michael, Derenkó, Jaqueline, Rademacher, Antje, Helbig, Susanne, Munk, Bernhard, Pechtl, Alexander, Stolze, Yvonne, Prowe, Steffen, Schwarz, Wolfgang H., Schlüter, Andreas, Liebl, Wolfgang, Klocke, Michael

Five institutional partners participated in an interlaboratory comparison of nucleic acid extraction, RNA preservation and quantitative Real-Time PCR (qPCR) based assays for biogas biocenoses derived from different grass silage digesting laboratory and pilot scale fermenters. A kit format DNA extraction system based on physical and chemical lysis with excellent extraction efficiency yielded highly reproducible results among the partners and clearly outperformed a traditional CTAB/chloroform/isoamylalcohol based method. Analytical purpose, sample texture, consistency and upstream pretreatment steps determine the modifications that should be applied to achieve maximum efficiency in the trade-off between extract purity and nucleic acid recovery rate. RNA extraction was much more variable, and the destination of the extract determines the method to be used. RNA stabilization with quaternary ammonium salts was an as satisfactory approach as flash freezing in liquid N2. Due to co-eluted impurities, spectrophotometry proved to be of limited value for nucleic acid qualification and quantification in extracts obtained with the kit, and picoGreen® based quantification was more trustworthy. Absorbance at 230 nm can be extremely high in the presence of certain chaotropic guanidine salts, but guanidinium isothiocyanate does not affect (q)PCR. Absolute quantification by qPCR requires application of a reliable internal standard for which correct PCR efficiency and Y-intercept values are important and must be reported.

Loading...
Thumbnail Image
Item

Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows

2018-5-2, Engelke, Stefanie W., Daş, Gürbüz, Derno, Michael, Tuchscherer, Armin, Berg, Werner, Kuhla, Björn, Metges, Cornelia C.

Ruminant enteric methane emission contributes to global warming. Although breeding low methane-emitting cows appears to be possible through genetic selection, doing so requires methane emission quantification by using elaborate instrumentation (respiration chambers, SF6 technique, GreenFeed) not feasible on a large scale. It has been suggested that milk fatty acids are promising markers of methane production. We hypothesized that methane emission can be predicted from the milk fatty acid concentrations determined by mid-infrared spectroscopy, and the integration of energy-corrected milk yield would improve the prediction. Therefore, we examined relationships between methane emission of cows measured in respiration chambers and milk fatty acids, predicted by mid-infrared spectroscopy, to derive diet-specific and general prediction equations based on milk fatty acid concentrations alone and with the additional consideration of energy-corrected milk yield. Cows were fed diets differing in forage type and linseed supplementation to generate a large variation in both CH4 emission and milk fatty acids. Depending on the diet, equations derived from regression analysis explained 61 to 96% of variation of methane emission, implying the potential of milk fatty acid data predicted by mid-infrared spectroscopy as novel proxy for direct methane emission measurements. When data from all diets were analyzed collectively, the equation with energy-corrected milk yield (CH4 (L/day) = − 1364 + 9.58 × energy-corrected milk yield + 18.5 × saturated fatty acids + 32.4 × C18:0) showed an improved coefficient of determination of cross-validation R2 CV = 0.72 compared to an equation without energy-corrected milk yield (R2 CV = 0.61). Equations developed for diets supplemented by linseed showed a lower R2 CV as compared to diets without linseed (0.39 to 0.58 vs. 0.50 to 0.91). We demonstrate for the first time that milk fatty acid concentrations predicted by mid-infrared spectroscopy together with energy-corrected milk yield can be used to estimate enteric methane emission in dairy cows. © 2018, The Author(s).

Loading...
Thumbnail Image
Item

Environmental Effects over the First 2½ Rotation Periods of a Fertilised Poplar Short Rotation Coppice

2017-12-7, Kern, Jürgen, Germer, Sonja, Ammon, Christian, Balasus, Antje, Bischoff, Wolf-Anno, Schwarz, Andreas, Forstreuter, Manfred, Kaupenjohann, Martin

A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model. © 2017, The Author(s).

Loading...
Thumbnail Image
Item

Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability

2017, Hempel, Sabrina, König, Marcel, Menz, Christoph, Janke, David, Amon, Barbara, Banhazi, Thomas M., Estellés, Fernando, Amon, Thomas

The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors

Loading...
Thumbnail Image
Item

Biochar research activities and their relation to development and environmental quality. A meta-analysis

2017-6-6, Mehmood, Khalid, Chávez Garcia, Elizabeth, Schirrmann, Michael, Ladd, Brenton, Kammann, Claudia, Wrage-Mönnig, Nicole, Siebe, Christina, Estavillo, Jose M., Fuertes-Mendizabal, Teresa, Cayuela, Mariluz, Sigua, Gilbert, Spokas, Kurt, Cowie, Annette L., Novak, Jeff, Ippolito, James A., Borchard, Nils

Biochar is the solid product that results from pyrolysis of organic materials. Its addition to highly weathered soils changes physico-chemical soil properties, improves soil functions and enhances crop yields. Highly weathered soils are typical of humid tropics where agricultural productivity is low and needs to be raised to reduce human hunger and poverty. However, impact of biochar research on scientists, politicians and end-users in poor tropical countries remains unknown; assessing needs and interests on biochar is essential to develop reliable knowledge transfer/translation mechanisms. The aim of this publication is to present results of a meta-analysis conducted to (1) survey global biochar research published between 2010 and 2014 to assess its relation to human development and environmental quality, and (2) deduce, based on the results of this analysis, priorities required to assess and promote the role of biochar in the development of adapted and sustainable agronomic methods. Our main findings reveal for the very first time that: (1) biochar research associated with less developed countries focused on biochar production technologies (26.5 ± 0.7%), then on biochars’ impact on chemical soil properties (18.7 ± 1.2%), and on plant productivity (17.1 ± 2.6%); (2) China dominated biochar research activities among the medium developed countries focusing on biochar production technologies (26.8 ± 0.5%) and on use of biochar as sorbent for organic and inorganic compounds (29.1 ± 0.4%); and (3) the majority of biochar research (69.0±2.9%) was associated with highly developed countries that are able to address a higher diversity of questions. Evidently, less developed countries are eager to improve soil fertility and agricultural productivity, which requires transfer and/or translation of biochar knowledge acquired in highly developed countries. Yet, improving local research capacities and encouraging synergies across scientific disciplines and countries are crucial to foster development of sustainable agronomy in less developed countries. © 2017, The Author(s).

Loading...
Thumbnail Image
Item

Precise Navigation of Small Agricultural Robots in Sensitive Areas with a Smart Plant Camera

2015, Dworak, Volker, Huebner, Michael, Selbeck, Joern

Most of the relevant technology related to precision agriculture is currently controlled by Global Positioning Systems (GPS) and uploaded map data; however, in sensitive areas with young or expensive plants, small robots are becoming more widely used in exclusive work. These robots must follow the plant lines with centimeter precision to protect plant growth. For cases in which GPS fails, a camera-based solution is often used for navigation because of the system cost and simplicity. The low-cost plant camera presented here generates images in which plants are contrasted against the soil, thus enabling the use of simple cross-correlation functions to establish high-resolution navigation control in the centimeter range. Based on the foresight provided by images from in front of the vehicle, robust vehicle control can be established without any dead time; as a result, off-loading the main robot control and overshooting can be avoided.