Search Results

Now showing 1 - 10 of 34
  • Item
    Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light-Matter Interactions
    (Washington, DC : Soc., 2019) Goßler, Fabian R.; Steiner, Anja Maria; Stroyuk, Oleksandr; Raevskaya, Alexandra; König, Tobias A.F.
    For large-scale fabrication of optical circuits, tailored subwavelength structures are required to modulate the refractive index. Here, we introduce a colloid-to-film-coupled nanocavity whose refractive index can be tailored by various materials, shapes, and cavity volumes. With this colloidal nanocavity setup, the refractive index can be adjusted over a wide visible wavelength range. For many nanophotonic applications, specific values for the extinction coefficient are crucial to achieve optical loss and gain. We employed bottom-up self-assembly techniques to sandwich optically active ternary metal-chalcogenides between a metallic mirror and plasmonic colloids. The spectral overlap between the cavity resonance and the broadband emitter makes it possible to study the tunable radiative properties statistically. For flat cavity geometries of silver nanocubes with sub-10 nm metallic gap, we found a fluorescence enhancement factor beyond 1000 for 100 cavities and a 112 meV Rabi splitting. In addition, we used gold spheres to extend the refractive index range. By this easily scalable colloidal nanocavity setup, gain and loss building blocks are now available, thereby leading to new generation of optical devices. Copyright © 2019 American Chemical Society.
  • Item
    Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments
    (Weinheim : Wiley-VCH, 2018-6-7) Almansoori, Alaa; Masters, Robert; Abrams, Kerry; Schäfer, Jan; Gerling, Torsten; Majewski, Candice; Rodenburg, Cornelia
    Polyamide 12 (PA12) powder was exposed for up to 3 h to low pressure air plasma treatment (LP-PT) and several minutes by two different atmospheric pressure plasma jets (APPJ) i.e., kINPen (K-APPJ) and Hairline (H-APPJ). The chemical and physical changes resulting from LP-PT were observed by a combination of Scanning Electron Microscopy (SEM), Hot Stage Microscopy (HSM) and Fourier transform infrared spectroscopy (FTIR), which demonstrated significant changes between the plasma treated and untreated PA12 powders. PA12 exposed to LP-PT showed an increase in wettability, was relatively porous, and possessed a higher density, which resulted from the surface functionalization and materials removal during the plasma exposure. However, it showed poor melt behavior under heating conditions typical for Laser Sintering. In contrast, brief PJ treatments demonstrated similar changes in porosity, but crucially, retained the favorable melt characteristics of PA12 powder.
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; Krüner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
  • Item
    Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
    (Weinheim : Wiley-VCH, 2019) Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel; Vogel, Karin; Gratz, Micha; Faivre, Damien; Lubk, Axel; Büchner, Bernd; Sturm, Elena V.; Cölfen, Helmut
    Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Correction: Electrochemically deposited nanocrystalline InSb thin films and their electrical properties (Journal of Materials Chemistry C (2016) 4 (1345-1350) DOI: 10.1039/C5TC03656A)
    (London : RSC Publ., 2019) Hnida, K.E.; Bäßler, S.; Mech, J.; Szaciłowski, K.; Socha, R.P.; Gajewska, M.; Nielsch, K.; Przybylski, M.; Sulka, G.D.
    There was an error in eqn (3) which was reproduced from the literature and used for the interpretation of the results. The calculations (using the equations from an original work from 1987) were done according the correct version of eqn (3) presented below:. (Table Presented). © 2019 The Royal Society of Chemistry.
  • Item
    Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology
    (Weinheim : Wiley-VCH, 2019) Sammak, Amir; Sabbagh, Diego; Hendrickx, Nico W.; Lodari, Mario; Wuetz, Brian Paquelet; Tosato, Alberto; Yeoh, LaReine; Bollani, Monica; Virgilio, Michele; Schubert, Markus Andreas; Zaumseil, Peter; Capellini, Giovanni; Veldhorst, Menno; Scappucci, Giordano
    Buried-channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 10 5 cm 2 V −1 s −1 ) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top-gate of a dopant-less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 10 11 cm −2 , light effective mass (0.09m e ), and high effective g-factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low-disorder material platform for hybrid quantum technologies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Correction: Interface-engineered reliable HfO2-based RRAM for synaptic simulation (Journal of Materials Chemistry C (2019) DOI: 10.1039/c9tc04880d)
    (London [u.a.] : RSC, 2019) Wang, Qiang; Niu, Gang; Roy, Sourav; Wang, Yankun; Zhang, Yijun; Wu, Heping; Zhai, Shijie; Bai, Wei; Shi, Peng; Song, Sannian; Song, Zhitang; Xie, Ya-Hong; Ye, Zuo-Guang; Wenger, Christian; Meng, Xiangjian; Ren, Wei
    There was an error in the author list of this published article. The corresponding authors for this paper are Gang Niu (gangniu@xjtu.edu.cn) and Wei Ren (wren@mail.xjtu.edu.cn). The footnote indicating that Qiang Wang and Gang Niu contributed equally to the work was not intended. The corrected author list and notations are shown here. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. © The Royal Society of Chemistry 2019.
  • Item
    Vanadium pentoxide/carbide-derived carbon core-shell hybrid particles for high performance electrochemical energy storage
    (London [u.a.] : RSC, 2016) Zeiger, Marco; Ariyanto, Teguh; Krüner, Benjamin; Peter, Nicolas J.; Fleischmann, Simon; Etzold, Bastian J.M.; Presser, Volker
    A novel, two step synthesis is presented combining the formation of carbide-derived carbon (CDC) and redox-active vanadium pentoxide (V2O5) in a core–shell manner using solely vanadium carbide (VC) as the precursor. In a first step, the outer part of VC particles is transformed to nanoporous CDC owing to the in situ formation of chlorine gas from NiCl2 at 700 °C. In a second step, the remaining VC core is calcined in synthetic air to obtain V2O5/CDC core–shell particles. Materials characterization by means of electron microscopy, Raman spectroscopy, and X-ray diffraction clearly demonstrates the partial transformation from VC to CDC, as well as the successive oxidation to V2O5/CDC core–shell particles. Electrochemical performance was tested in organic 1 M LiClO4 in acetonitrile using half- and asymmetric full-cell configuration. High specific capacities of 420 mA h g−1 (normalized to V2O5) and 310 mA h g−1 (normalized to V2O5/CDC) were achieved. The unique nanotextured core–shell architecture enables high power retention with ultrafast charging and discharging, achieving more than 100 mA h g−1 at 5 A g−1 (rate of 12C). Asymmetric cell design with CDC on the positive polarization side leads to a high specific energy of up to 80 W h kg−1 with a superior retention of more than 80% over 10 000 cycles and an overall energy efficiency of up to 80% at low rates.
  • Item
    Ultrafast phosphate hydration dynamics in bulk H2O
    (Melville, NY : American Institute of Physics, 2015) Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4− ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (𝜈𝑆(PO−2)) and asymmetric (𝜈𝐴𝑆(PO−2)) PO−2 stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the 𝜈𝑆(PO−2) and 𝜈𝐴𝑆(PO−2) transition frequencies with larger frequency excursions for 𝜈𝐴𝑆(PO−2). The calculated frequency-time correlation function is in good agreement with the experiment. The 𝜈(PO−2) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4−/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.