Search Results

Now showing 1 - 10 of 18
  • Item
    A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive
    (Oxford : Elsevier Science, 2012) Müller, Michael Thomas; Krause, Beate; Pötschke, Petra
    An additive-assisted one-step melt mixing approach was developed to produce nanocomposites based on linear low density polyethylene (LLDPE) with multiwalled carbon nanotube (MWCNT). The polymer granules, nanotube powder (2 wt% Nanocyl™ NC7000) and 1-10 wt% of the non-ionic additives poly(ethylene glycol) (PEG) or poly(ethylene oxide) (PEO) with molar masses between 100 g/mol and 100,000 g/mol were simply fed together in the hopper of a small-scale DSM Xplore 15 twin-screw microcompounder. The produced MWCNT/LLDPE composites showed excellent MWCNT dispersion and highly improved electrical properties as compared to samples without the additive, whereas the effects depend on the amount and molar mass of the additive. When 7 wt% PEG (2000 g/mol) were used, a reduction of the electrical percolation threshold from 2.5 wt% to 1.5 wt% was achieved. © 2012 Elsevier Ltd. All rights reserved.
  • Item
    Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
    (Manchester, NH : Wiley, 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Conductive polymer composites (CPCs) with high electrical and thermal conductivities are demanded for bipolar plates of fuel cells. In this work, CPCs of polycarbonate (PC) filled with carbon nanotube (CNT), carbon fiber (CF), graphite (G), and their double and triple hybrids were prepared using solution casting method followed by compression molding. The results showed that the electrical percolation thresholds for the PC-CNT and PC-CF were ~1 wt% and ~10 wt%, respectively, while no clear threshold was found for PC-G composites. Addition of 3–5 wt% CNT improved the electrical conductivity of PC-CF and PC-G systems up to 6 orders of magnitude and enhanced the thermal conductivity as much as 65%. The results of triple hybrid CPCs (with constant loading of 63 wt%) indicated that the combination of highest electrical and thermal conductivities is achieved when the CF and CNT loadings were near their percolation thresholds. Therefore, a triple filler system of 3 wt% CNT, 10 wt% CF, and 50 wt% G resulted in a composite with the through-plane and in-plane electrical conductivity, and thermal conductivity values of 12.8 S/cm, 8.3 S/cm, and 1.7 W/m•K, respectively. The results offer a combination of properties surpassing the existing values and suitable for high-conductivity applications such as bipolar plates. POLYM. COMPOS., 40:3189–3198, 2019. © 2018 Society of Plastics Engineers.
  • Item
    Achieving electrical conductive tracks by laser treatment of non-conductive polypropylene/polycarbonate blends filled with MWCNTs
    (Weinheim : Wiley-VCH, 2014) Liebscher, Marco; Krause, Beate; Pötschke, Petra; Barz, Andrea; Bliedtner, Jens; Möhwald, Michael; Letzsch, Alexander
    Electrical non-conductive polymer blends consisting of a polypropylene (PP) matrix and dispersed particles of polycarbonate (PC) were melt compounded with 3 wt.% multiwalled carbon nanotubes (MWCNTs) loading and processed into plates by injection molding. The morphological analysis confirmed the selective localization of the MWCNTs in the PC component. By local irradiation with a CO2 laser beam, depending on the laser conditions, conductive tracks with dimensions of about 2 mm width, 80 to 370 μm depth and line resistances as low as 1.5 kΩ · cm-1 were created on the surface of the non-conductive plates. The factors affecting the line resistance are the PC content, the laser speed and laser power, as well as laser direction with respect to the melt flow direction. After the irradiation an enrichment of MWCNTs in the laser lines was detected indicating that conductive paths were generated by percolation of nanotubes selectively within these lines in otherwise non-conductive plates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices
    (Oxford : Elsevier Science, 2018) Krause, Beate; Barbier, Carine; Kunz, Karina; Pötschke, Petra
    In this contribution, three different types of CNTs, namely single-walled (SWCNT), multi-walled (MWCNT) and branched MWCNTs were melt mixed in amounts of 0.1–10 wt.-% in polypropylene (PP), polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) using a small-scale microcompounder. The filler dispersion of compression-moulded samples was characterized using light and electron microscopy, and the electrical and thermal properties were measured. The lowest electrical percolation thresholds were found for composites of PP/SWCNT, PP/branched MWCNT and PC/branched MWCNT, which percolated already at <0.1 wt.-% CNT loading. Low values of electrical volume resistivity of about 3 Ohm·cm (PVDF), 7 Ohm·cm (PP) and 2 Ohm·cm (PC) could be reached when loading with 2 wt.-% branched MWCNT. A homogeneous dispersion in the macro- and microlevel was observed especially for composites containing branched MWCNTs. For all CNT types, a matrix nucleation effect was found in PP and PVDF using differential scanning calorimetry.
  • Item
    Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution
    (Oxford : Elsevier Science, 2013) Pötschke, Petra; Villmow, Tobias; Krause, Beate
    Composites of poly(caprolactone) (PCL) and 0.5 wt.% multiwalled carbon nanotubes (MWCNT) were prepared by melt-mixing in a conical twin-screw micro-compounder by varying the rotation speed between 25 and 400 rpm at constant mixing time and temperature. The state of dispersion analyzed by light microscopy was improved with increasing rotation speed but levels off starting at about 100 rpm. PCL molecular weight as well as crystallization and melting behavior did show only insignificant difference when varying the rotation speed. Concerning melt rheological properties, storage modulus G′ and complex viscosity η* at 0.1 rad/s increased up to a rotation speed of about 75 rpm illustrating improved dispersion. When further increasing the speed G′ and η* decreased which was attributed to more pronounced nanotube shortening as quantified by TEM measurements. Both effects - improved dispersion and nanotube shortening - are also reflected in the electrical resistivity values of compression molded samples which show a minimum of resistivity at the rotation speed of 75 rpm corresponding to a specific mechanical energy input of 0.47 kWh/kg. © 2013 Elsevier Ltd. All rights reserved.
  • Item
    Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol
    (Oxford : Elsevier Science, 2017) Luo, Jinji; Cerretti, Giacomo; Krause, Beate; Zhang, Long; Otto, Thomas; Jenschke, Wolfgang; Ullrich, Mathias; Tremel, Wolfgang; Voit, Brigitte; Pötschke, Petra
    The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.
  • Item
    The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites
    (Oxford : Elsevier Science, 2012) Socher, Robert; Krause, Beate; Müller, Michael T.; Boldt, Regine; Pötschke, Petra
    Composites of MWCNTs having each three different levels of matrix viscosity with five different polymers (polyamide 12, polybutylene terephthalate, polycarbonate, polyetheretherketone and low density polyethylene) were melt mixed to identify the general influence of matrix viscosity on the electrical properties and the state of MWCNT dispersion. Huge differences in the electrical percolation thresholds were found using the same polymer matrix with different viscosity grades. The lowest percolation thresholds were always found in the composites based on the low viscosity matrix. The state of primary MWCNT agglomerate dispersion increased with increasing matrix viscosity due to the higher input of mixing energy. TEM investigations showed nanoagglomerated structures in the low viscosity samples which are obviously needed to achieve low resistivity values. The effect of nanotube shortening was quantified using two different viscosity grades of polycarbonate. Due to the higher mixing energy input the nanotube shortening was more pronounced in the high viscosity matrix which partially explains the higher percolation threshold. © 2011 Elsevier Ltd. All rights reserved.
  • Item
    Melt mixed SWCNT-polypropylene composites with very low electrical percolation
    (Oxford : Elsevier Science, 2016) Krause, Beate; Pötschke, Petra; Ilin, Evgeniy; Predtechenskiy, Mikhail
    Singlewalled carbon nanotube material of the type TUBALL™ (OCSiAl) was used to prepare composites with polypropylene by melt mixing using a conical twin screw micro-compounder. The compression moulded composites showed electrical percolation between 0.075 and 0.1 wt % and achieved volume resistivity values lower than 1 kOhm-cm already at 0.8 wt % loading. Light microscopy and scanning electron microscopy revealed good distribution and dispersion into small diameter bundles as well as retained high nanotube length. In connection with the very low percolation threshold this indicates that the SWCNT material shows an exceptionally good dispersibility which may be due to relatively high nanotube diameters with a mean value of 1.6 nm. In tensile tests already 0.1 wt % nanotube additions resulted in slight increase in Young's modulus and maximum stress. Tuball™ SWCNT material seems to be very promising for conductivity enhancement.
  • Item
    Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions
    (Oxford : Elsevier Science, 2014) Staudinger, Ulrike; Krause, Beate; Steinbach, Christine; Pötschke, Petra; Voit, Brigitte
    The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.
  • Item
    Localization of carbon nanotubes in polyamide 6 blends with non-reactive and reactive rubber
    (Oxford : Elsevier Science, 2014) Krause, Beate; Schneider, Cecile; Boldt, Regine; Weber, Martin; Park, Hye Jin; Pötschke, Petra
    Blending of two immiscible polymer matrices can be an effective way to combine favourable properties of both blend partners. The additional incorporation of multiwalled carbon nanotubes (MWCNTs) in such thermoplastic blends may further enhance the blend properties and especially generate electrical conductivity. In the present study, 20 wt.% of non-reactive rubber and maleic anhydride functionalized rubber were melt blended with polyamide 6 and 3 wt.% MWCNTs by using different incorporation strategies. For the blends containing non-reactive rubber, the MWCNTs were always localized selectively in the thermodynamically preferred polyamide phase as shown by TEM images and electrical measurements. Interestingly, the different strategies resulted in different localization behaviours of the MWCNTs in case of the reactive rubber. These findings demonstrate the significant influence of maleic anhydride groups of the rubber component on localization of MWCNTs in the different blend phases which results in different values of electrical volume resistivity of the blends. © 2014 The Authors. Published by Elsevier Ltd.